- 博客(1352)
- 收藏
- 关注
原创 YOLOv8 PCB缺陷检测系统全流程实战:从开发到UI展示详解
毕设路上难免有波折,但只要跟着这个教程把“数据集处理、模型训练、UI开发”每一步都落实,你就已经超越了大多数同学。这个“PCB缺陷检测系统”既有技术深度(YOLOv8是工业级主流算法),又有工程价值(解决电子制造的实际痛点),还具备出色的可视化展示——这样的毕设,拿高分是水到渠成的事。
2026-01-27 13:53:24
107
原创 YOLOv5性能突破!融合二阶通道注意力SOCA实现小目标检测新高度
1.1 引言:从YOLOv5的“视觉瓶颈”谈起YOLOv5作为目标检测领域的翘楚,以其卓越的平衡性(速度与精度)深受广大开发者喜爱。然而,在面对一些极端场景时,即便是强大的YOLOv5也可能显现出“视觉瓶颈”。例如,在背景极其杂乱、目标被严重遮挡,或是需要检测大量小目标的场景中,模型可能会产生漏检或误检。其根本原因在于,传统的卷积神经网络(CNN)在特征提取时,更侧重于学习局部区域的纹理、边缘等信息。
2026-01-27 13:52:18
35
原创 【YOLOv5 极限优化】基于 ShuffleNetV2 重构主干网络,打造超高效轻量级目标检测模型(文末含资料链接与视频讲解)
在models文件夹下,复制一份文件,并将其重命名为。这个文件将是您定义新的ShuffleNetV2主干网络的配置文件。然后,根据ShuffleNetV2的网络结构图以及我们在common.py中定义的模块,修改的backbone部分。YOLOv5的YAML配置是列表形式,每个元素代表一个层,格式通常是from: 上一个连接的层索引,`--1表示连接上一层。number: 重复该模块的次数。module: 模块的名称(在yolo.py中eval()可识别的字符串)。args: 模块的初始化参数列表。
2026-01-27 13:50:39
54
原创 深度融合实战:在 YOLOv5 中引入 MobileViTv1,打造轻量高效的移动端目标检测模型(附资料链接)
卷积神经网络(CNN)和视觉Transformer(ViT)。CNN以其卓越的局部感知能力和参数共享机制,在图像处理任务中取得了巨大成功。它们通过多层卷积核提取图像的局部特征,并逐步聚合形成高级语义信息。然而,CNN在捕捉全局信息方面存在固有的局限性,其感受野的扩大往往伴随着网络深度的增加或特殊设计,这在某些需要长距离依赖的任务中可能表现不佳。同时,虽然已经有许多轻量级CNN模型如MobileNet、ShuffleNet等,但在某些复杂任务上,它们可能需要在性能和效率之间做出权衡。ViT则凭借其。
2026-01-27 13:49:24
32
原创 从零到深入:基于 TensorFlow 与 OpenCV 的强化版人脸识别与高精度关键点检测实战(附资料链接)
本教程旨在提供一份全面、深入且易于理解的指南,手把手教您如何使用TensorFlow和OpenCV实现人脸识别与关键点检测。我们将从最基础的库安装和数据准备开始,逐步深入到人脸检测的核心原理,详细讲解基于卷积神经网络(CNN)的模型训练框架搭建,并最终实现训练模型的保存、加载与实际应用。文章不仅会提供详尽的代码解析,更会深挖每个环节背后的计算机视觉和深度学习原理,包括Haar级联分类器的工作机制、CNN模型的设计哲学、以及如何高效处理和优化数据集。
2026-01-27 13:48:09
25
原创 YOLOv11 注意力机制深度优化:CoT Attention 全场景适配与高精度检测实战(附资料链接)
本文通过CoTAttention模块技术突破:提出上下文感知注意力机制,实现18.7%的小目标检测提升工程实践:提供完整的自动驾驶场景集成方案和训练策略性能提升:在BDD100K数据集上实现夜间车辆检测率提升23.4%关键学习收获理解CoTAttention如何破解传统注意力的局部性限制掌握在YOLO架构中集成动态上下文感知机制的方法论学会设计针对复杂场景的专项优化策略通过本文的实战指导,研究者可快速将CoTAttention应用于自动驾驶、智慧交通等领域,实现检测精度与计算效率的双重突破。
2026-01-27 13:46:53
26
原创 YOLOv11 轻量化实战解析:基于 AKConv 变核卷积的高效目标检测模型优化(附资料链接)
在移动端和边缘计算场景中,模型轻量化与检测精度的平衡始终是核心挑战。本文提出一种**基于变核卷积(AKConv)**的YOLOv11改进方案,通过动态调整卷积核采样形状与参数数量,在保持高精度的同时显著降低计算开销。实验表明,该方案在COCO数据集上将mAP@0.5提升0.3%,推理速度提升28%(CPU)与12.5%(GPU),参数量减少15%。本文将完整揭示其技术原理与工程实现细节。
2026-01-27 13:45:53
28
原创 YOLOv8 模型进化全解析:百种创新模块集成方法与实战部署指南(附资料链接)
动态网络 | DeformableConv/DynamicHead| +2.8% || 轻量化卷积 | GhostConv/MobileConv | +1.2% || 多尺度融合 | AFPN/ASFF | +3.5% || 注意力机制 | CA/EMA/SimAM | +1.8-4.2% |
2026-01-27 13:44:31
23
原创 Mamba-YOLOv8 深度解析:基于状态空间模型的目标检测新架构(附完整代码与部署实战)
在目标检测领域,CNN与Transformer的较量从未停歇。本文提出一种革命性的架构——,将状态空间模型(SSM)首次引入YOLO框架。实验表明,该模型在COCO数据集上达到54.3% mAP@0.5,推理速度达89 FPS(RTX 4090),相比原版YOLOv8提升12.7%精度与23%速度。本文将完整揭示其技术原理与工程实现,助您掌握这一前沿技术。
2026-01-27 13:43:23
29
原创 基于 DWRSeg 的 YOLOv10 骨干网络深度优化实战:DWR 模块助力小目标检测性能大幅提升
总结与展望:开启 YOLOv10 小目标检测新篇章!🚀通过本篇教程的深入探讨与实战指导,我们已经成功地将DWRSeg中的DWR模块这一专为多尺度特征提取设计的创新,巧妙地融入了YOLOv10的骨干网络。这不仅仅是一次代码层面的修改,更是对模型在复杂场景下,尤其是小目标检测这一挑战性任务中表现的一次深度赋能。核心收益概览:DWR模块利用不同扩张率的深度分离扩张卷积,赋予YOLOv10更强大的能力,使其能够同时感知局部精细特征和全局上下文信息,这对于小目标特征的提取至关重要。**小目标检测性能提升。
2026-01-27 13:41:46
27
原创 基于YOLOv8的多目标跟踪与分割(MOTS)系统实战教程——完整流程与UI界面开发
如果你正为计算机视觉方向的毕设发愁,那这个“多目标跟踪与分割(MOTS)+YOLOv8+UI界面”的项目绝对是你的绝佳选择。它不仅融合了三大计算机视觉核心任务,还能通过实现可视化交互,让你的毕设既有技术深度,又有工程落地性。接下来,我们一步步带你从0到1完成这个项目,让你的毕设答辩脱颖而出。
2026-01-26 17:01:43
24
原创 基于 YOLOv8 的 FireNet 火焰与烟雾检测系统:从模型训练到 UI 可视化全流程实战
的FireNet火焰与烟雾检测系统,会是你毕设的“王牌项目”。它能实时检测视频流中的火焰与烟雾,还能实现图形界面可视化,从技术深度到成果展示都能让你在答辩中脱颖而出。界面会调用摄像头实时检测火焰与烟雾,检测结果会以带边界框的形式展示,同时给出“检测到火焰/烟雾!无论是学术创新性,还是在工业安防、建筑消防等场景的应用潜力,它都能让你的毕设极具说服力。传统人工监控效率低、易漏检,而基于YOLOv8的自动检测系统能实时识别火焰、烟雾,为火灾预警争取宝贵时间。火灾预防与应急响应是安全领域的核心需求,
2026-01-26 16:58:30
33
原创 从 0 到 1 构建动物行为分析系统:基于 YOLOv5 的完整开发实战教程
亲爱的同学,毕设季是不是让你既期待又焦虑?如果你的毕设方向涉及计算机视觉、深度学习,那这个绝对能成为你的“毕设救星”。接下来,我会把这个系统从头到尾拆解清楚,从背景到实战,让你能一步步跟着做出属于自己的毕设项目。
2026-01-26 16:57:24
28
原创 从 0 到 1 打造 YOLOv8 跌倒检测系统:完整流程解析
亲爱的同学,如果你正在为毕设发愁,尤其是想做一个既实用又有技术含量的深度学习项目,那这篇教程就是为你量身打造的。跌倒检测系统在老龄化社会背景下极具应用价值,基于YOLOv8的实现更是能体现你的技术水平。接下来,我们就一步步带你完成这个项目,从理论到实践,让你轻松搞定毕设,甚至未来还能把它拓展成实际产品!
2026-01-26 16:56:10
29
原创 RK3399 开发板 TensorFlow 实战指南:深度学习环境搭建、配置与推理测试全流程
通过以上步骤,你已成功在RK3399开发板上搭建并验证了TensorFlow环境,还完成了一个简单的图像识别实战。这只是嵌入式AI的起点,你可以继续探索更复杂的模型、更丰富的应用场景,让RK3399成为你玩转边缘智能的得力工具!是一款性能强劲的嵌入式硬件,拥有双Cortex-A72大核和四Cortex-A53小核,还集成了专门的AI加速单元,非常适合运行轻量级深度学习模型。这段代码的功能是导入TensorFlow库,定义两个常量并输出它们的和,用于验证TensorFlow环境是否正常。
2026-01-26 16:50:03
174
原创 RK3588 平台部署实战:OpenCV + LibTorch + FFmpeg 环境搭建与深度学习推理全流程解析
现在,你已经掌握了在RK3588上搭建OpenCV+LibTorch+FFmpeg环境的完整流程,也完成了深度学习模型的部署测试。不妨从一个具体的应用场景入手(如检测自家宠物的品种),亲手打造属于你的第一个边缘智能应用——当你看到模型在RK3588上精准输出结果时,你会发现:嵌入式深度学习的门槛,其实并没有想象中那么高。这些依赖是编译OpenCV、FFmpeg的基础,安装过程中若提示权限不足,可在命令前加。若能输出预测的类别索引,则说明环境搭建成功,模型推理流程通畅。文件,实现模型加载、图像预处理与推理。
2026-01-26 16:48:37
440
原创 多模态 ViT 从入门到实战全解析:视觉 Transformer 原理、架构与应用落地
不妨从一个实际场景入手,比如用它来检索本地相册中与你描述相符的照片,或生成你想象中的艺术作品——当你看到模型能精准理解图文信息并给出反馈时,你会发现多模态AI的魅力所在。替换为你的测试图像,运行脚本后,模型会输出图像与各文本描述的相似度,你可以看到模型能精准匹配“一只猫”这个描述。准备一个包含多种图像的目录,运行脚本后,模型会根据文本“一只在草地上玩耍的狗”检索出最匹配的图像并展示。只需输入文本描述,模型就能生成对应的图像,你可以尝试不同的风格和场景描述,探索生成式AI的创意边界。
2026-01-26 16:44:02
107
原创 CLIP 从 0 到 1 全面实战:多模态图文理解原理详解与应用案例拆解
CLIP的预训练需要超大规模图文对数据(如LAION-400M)和超强算力,普通开发者很难复现。但可以基于开源的预训练模型做领域微调收集自己领域的“图文对”(如“工业零件图+缺陷描述”);用对比学习的思路微调模型,让它更适配特定场景。从技术原理到实战落地,我们已经走完了CLIP的完整学习路径。它不仅是一个模型,更是多模态AI的“思维方式”——让图像和文本在语义层面“对话”。现在,不妨从识别身边的物品开始,再尝试图文检索、零样本分类等任务。
2026-01-26 16:35:31
32
原创 基于 YOLOv5 的人脸识别实战教程:模型原理、系统搭建与应用落地全解析
深度学习是机器学习的一个分支,旨在通过多层神经网络模拟人脑的认知能力。它能够从大量数据中自动提取特征,并进行准确的预测和分类。在计算机视觉领域,深度学习技术已经取得了显著的成果,尤其是在图像识别、目标检测等方面。YOLOv5是YOLO系列模型的最新版本,结合了卷积神经网络(CNN)和其他创新技术。它在保持高精度的同时,显著提高了推理速度。YOLOv5的结构轻量且高效,非常适合实时目标检测任务。人脸检测的目标是从图像或视频中定位所有人脸的位置。
2026-01-26 16:33:17
32
原创 Flamingo多模态大模型实战教程:原理解析 + 图文理解应用,打造智能交互新体验
掌握它,你不仅能玩转现有场景,更能在智能客服、内容创作、工业检测等领域开拓新的应用模式。不妨从生活中的场景入手,比如用它来识别宠物的品种并给出养护建议,或分析旅行照片并生成游记片段——当你看到模型能精准理解图文并生成有价值的内容时,你会发现多模态AI的魅力远超想象。本教程将带你从技术认知到实际应用,轻松掌握Flamingo的核心玩法,让你在多模态AI领域抢占先机。替换为你的测试图像,运行脚本后,Flamingo会根据图像和问题生成自然语言回答,比如“这只猫在玩毛线球”。在人工智能的多模态领域,
2026-01-26 16:31:16
28
原创 零基础玩转风格迁移与GAN:原理讲透 + 趣味实战,快速生成艺术图与创意图像
风格迁移的核心是**“内容保留,风格替换”**。比如,把城市建筑的“内容”,套上印象派油画的“风格”,最终得到一幅既保留建筑原貌,又充满艺术感的新作品(如图中“Content(内容图)”“Style(风格图)”到“Generated Image(生成图)”的转变)。它就像给图像换了件“艺术外衣”,却没改变它的“灵魂”。layers = {'21': 'conv4_2', # 内容层x = image生成器(Generator):负责“造假”,从随机噪声中生成逼真的假数据(比如假图像、假文本)。
2026-01-26 16:29:43
27
原创 风格迁移从零到实战:原理解析 + 代码实现,让普通图片一键变身艺术风格作品
提取指定层的特征layers = {'21': 'conv4_2', # 内容层,选conv4_2保留较多内容细节x = image# 计算Gram矩阵(风格损失的核心)gram = torch.mm(features, features.t()) # 矩阵乘法return gram / (batch_size * channels * height * width) # 归一化风格迁移的本质是让机器学会区分“内容结构”和“风格纹理”,并通过数学优化来融合二者。
2026-01-26 16:28:01
35
原创 Matlab指纹识别实战:指纹提取+图像增强+断裂修复全流程,生物特征匹配与特征点检测详解
从简单的图像预处理,到精准的细节点提取,再到智能的指纹修复——通过这一系列操作,你会发现指纹识别技术并没有那么遥不可及。它本质上是**“让电脑理解指纹的特征,并利用这些特征解决实际问题”**。现在,你可以尝试用自己的指纹照片来测试代码,看看电脑能“看见”多少细节点;也可以故意给指纹图像添加一些“残缺”,测试修复算法的效果。随着你对这些技术的深入理解,你还可以探索更复杂的应用,比如将指纹识别集成到自己的小项目中,或是优化算法让识别更精准。
2026-01-26 16:26:31
368
原创 基于CA注意力机制优化的YOLOv12:目标检测精度提升全新方案
购买即可解锁300+YOLO优化文章,并且还有海量深度学习复现项目,价格仅需两杯奶茶的钱,别人有的本专栏也有!
2026-01-25 13:48:21
123
原创 InnerMPDIoU损失函数深度解析:利用边界框距离极值点优化YOLOv11定位精度
购买即可解锁300+YOLO优化文章,并且还有海量深度学习复现项目,价格仅需两杯奶茶的钱,别人有的本专栏也有!目标检测模型的性能瓶颈始终集中在边界框回归的精度上。传统IoU系列损失函数(如DIoU、CIoU)虽然考虑了重叠面积、中心点距离和宽高比,但其优化过程依然存在宏观层面的粗放性。MPDIoU的提出通过直接最小化预测框与真实框之间的左上和右下两个关键点的距离,简化了优化路径。然而,其改进版本InnerMPDIoU通过引入“内部极值点”概念,将优化焦点从边界框的四个角点转向了内部最关键的偏移点,实现了损
2026-01-25 13:47:29
31
原创 基于Shape-IoU的YOLOv11目标检测优化:精准识别实战指南
目标检测领域的最新研究数据显示,损失函数优化对模型性能提升贡献度达到23.7%。基于Focal Loss改进的QualityFocalLoss(QFL)在YOLOv11框架中实现了突破性进展,在COCO数据集上使mAP指标提升2.1-3.4%,特别在困难样本检测方面表现突出。本教程详细解析QFL的核心机制,并提供完整的代码实现方案。
2026-01-25 13:46:35
27
原创 YOLOv11检测性能突破:基于Shape-IoU损失函数的优化实战教程
Shape-IoU通过引入形状和尺度感知机制,有效解决了传统IoU损失对边界框几何特性不敏感的问题。在多个权威数据集上验证了其卓越性能。
2026-01-25 13:45:38
22
原创 YOLOv11全新注意力机制革命:Mamba-MLLA完整集成与优化教程
购买即可解锁300+YOLO优化文章,并且还有海量深度学习复现项目,价格仅需两杯奶茶的钱,别人有的本专栏也有!
2026-01-25 13:44:38
20
原创 Docker部署TensorRT推理优化YOLO模型:人体检测实战教程
需要在有界面的主机上安装,远程ssh无法使用窗口# 建议使用conda虚拟环境 # 安装 pip install labelImg # 启动 labelImg。
2026-01-25 13:43:36
20
原创 CMake编译实现RTSP推流功能全流程解析:Ubuntu平台详细教程
RTSP(Real-Time Streaming Protocol,实时流媒体协议)是一种用于控制实时音视频流传输的网络协议,属于应用层协议(基于TCP或UDP)。功能定位:类似流媒体的“远程控制”协议,负责 播放、暂停、停止、快进 等操作(但不直接传输数据)。类比:RTSP 像电视遥控器,而实际视频数据通过 RTP(Real-time Transport Protocol)传输。典型应用场景:IP摄像头监控系统视频直播(如体育赛事)视频点播(如IPTV)
2026-01-25 13:27:35
24
原创 基于CMake的RTSP推流开发与实现:适配Ubuntu全流程详解
往期文章RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404。
2026-01-25 13:26:35
20
原创 TensorRT下的YOLOv5 INT8量化与多线程优化加速实战
在我们之前的介绍中提到,我们使用了YoloLayer_TRT插件,其功能是decode onnx模型的输出,这里的decode算子用GPU实现并加速了,以提高模型吞吐量。实现TensorRT Plugin需要实现插件类,和插件工厂类,并对插件进行注册。步骤如下:1.定义插件版本和插件名:位置:yoloPlugins.h 第51行// 定义插件版本和插件名namespace2.实现插件类位置:yoloPlugins.h 第58行插件类需要继承IPluginV2DynamicExt类。
2026-01-25 13:25:54
21
原创 YOLOv5在Jetson平台上的TensorRT INT8量化与多线程优化实践
在我们之前的介绍中提到,我们使用了YoloLayer_TRT插件,其功能是decode onnx模型的输出,这里的decode算子用GPU实现并加速了,以提高模型吞吐量。实现TensorRT Plugin需要实现插件类,和插件工厂类,并对插件进行注册。步骤如下:1.定义插件版本和插件名:位置:yoloPlugins.h 第51行// 定义插件版本和插件名namespace2.实现插件类位置:yoloPlugins.h 第58行插件类需要继承IPluginV2DynamicExt类。
2026-01-25 13:25:11
26
原创 Jetson Nano实现YOLOv5目标检测与多目标跟踪:TensorRT加速全流程解析
往期文章RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404。
2026-01-25 13:24:24
25
原创 YOLOv5目标跟踪在Jetson设备上的实现:精准实时检测与跟踪教程
往期文章RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404。
2026-01-25 13:22:56
557
原创 Jetson Nano人体姿态估计实战:从算法实现到性能优化全流程解析
往期文章RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404。
2026-01-25 13:21:59
25
原创 Jetson NX/Nano部署YOLOv5实战:TensorRT加速模型优化与性能调优详解
往期文章RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404。
2026-01-25 13:21:17
24
原创 基于TensorRT的Jetson设备背景虚化部署实战
往期文章RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404。
2026-01-25 13:19:15
17
原创 深度学习部署全流程实战:基于TensorRT+INT8量化实现指定区域行人检测与人群密度分析
往期文章RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404。
2026-01-25 10:07:54
171
原创 CUDA核心原理解析:深度学习加速的基础
RTSP(Real-Time Streaming Protocol,实时流媒体协议)是一种用于控制实时音视频流传输的网络协议,属于应用层协议(基于TCP或UDP)。功能定位:类似流媒体的“远程控制”协议,负责 播放、暂停、停止、快进 等操作(但不直接传输数据)。类比:RTSP 像电视遥控器,而实际视频数据通过 RTP(Real-time Transport Protocol)传输。典型应用场景:IP摄像头监控系统视频直播(如体育赛事)视频点播(如IPTV)
2026-01-25 09:58:21
21
融合经典与深度学习方法的科研全路径:从ARIMA、LSTM到Transformer的模型对比与创新应用设计
2026-01-05
【计算机视觉】YOLOv8损失函数解析:基于DFL与交叉熵的边界框与分类损失协同优化设计
2026-01-05
YOLOv8分类与边界框损失优化:目标检测精度提升的科研方法与创新实践
2026-01-05
【计算机视觉】YOLOv8目标检测损失函数解析:分类与定位联合优化模型设计
2026-01-05
YOLOv8检测头与损失函数解析:多尺度预测及DFL边界框回归在目标检测中的应用研究
2026-01-05
基于YOLOv8的检测头与损失函数深度解析:目标检测模型核心组件设计及实战优化
2026-01-05
YOLOv8检测头与损失函数协同优化:面向多尺度目标检测的科研创新方法研究
2026-01-05
基于DynamicConv3的YOLOv5轻量化改进:低FLOPs高精度模型设计与工业落地应用
2026-01-05
基于DynamicConv3的YOLOv5轻量化优化:低FLOPs下高精度目标检测模型设计与实现
2026-01-05
基于DynamicConv的YOLOv5改进模型:低FLOPs下高精度目标检测方法研究
2026-01-05
传统与深度学习方法综述:ARIMA、Prophet、LSTM、Transformer模型在多场景下的应用与优化策略
2026-01-05
传统模型与深度学习融合:基于ARIMA-LSTM的多变量时序预测系统设计与工业级部署
2026-01-05
基于SimAM与NAM的轻量注意力机制:YOLOv8目标检测性能优化方法研究
2026-01-05
YOLOv8融合SimAM与NAM注意力机制:轻量无参与标准化设计在目标检测中的精度与速度优化方案
2026-01-05
基于SimAM与NAM的轻量注意力机制:YOLOv8目标检测模型优化与科研实验设计
2026-01-05
【计算机视觉】基于可变形注意力的YOLOv8改进:复杂场景下小目标与遮挡目标精准检测方法研究
2026-01-05
YOLOv8融合可变形注意力(DAT)的目标检测优化:复杂场景下不规则目标精准识别技术实现
2026-01-05
基于可变形注意力的YOLOv8改进:不规则目标检测模型设计与科研实验方法
2026-01-05
YOLOv8融合多维协作注意力MCA:面向复杂场景目标检测的高精度特征增强方法设计
2026-01-05
基于MCA多维协作注意力的YOLOv8改进:目标检测中通道-空间-尺度特征融合方法研究
2026-01-05
融合Dual与HetConv的CSPHet轻量架构:YOLOv8模型参数降低70%的科研优化方案
2026-01-05
基于Dual与HetConv的CSPHet轻量架构:YOLOv8参数压缩70%精度提升实战设计
2026-01-05
【计算机视觉】基于CSPHet与YOLOv8的轻量级目标检测模型设计:异构卷积与Dual思想融合的科研实践方案
2026-01-05
基于AIF注意力机制的目标检测模型优化:YOLOv8与RT-DETR融合的复杂场景检测方法研究
2026-01-05
基于AIF模块的YOLOv8改进:融合注意力与特征交互的实时目标检测优化方案
2026-01-05
基于AIF模块的YOLOv8改进:复杂场景下长距离依赖与小目标检测精度提升方法
2026-01-05
基于SPD-Conv的YOLOv8小目标检测优化:空间深度转换卷积在多尺度特征提取中的应用研究
2026-01-05
基于SPD-Conv与YOLOv8融合的小目标检测模型优化:低分辨率场景下的特征增强方法研究
2026-01-05
基于SPD-Conv的空间深度转换卷积优化:YOLOv8小目标检测精度提升方法与工业应用
2026-01-05
基于DynamicConv的YOLOv8改进:低FLOPs场景下目标检测精度提升方法研究
2026-01-05
基于DynamicConv2的YOLOv8轻量化改进:低FLOPs场景下目标检测精度提升方法
2026-01-05
基于DynamicConv2的YOLOv8改进:低FLOPs下高精度目标检测的原理与实战
2026-01-05
基于AKConv的YOLOv8轻量级改进:任意形状采样卷积助力多尺度目标检测精度提升
2026-01-05
基于AKConv的轻量级卷积优化:YOLOv8多尺度目标检测高效特征提取方法研究
2026-01-05
基于AKConv的动态卷积优化:YOLOv8轻量级模型在多尺度不规则目标检测中的高效特征提取方法研究
2026-01-05
基于DCNv4可变形卷积的YOLOv8改进:不规则目标检测精度提升方法研究
2026-01-05
基于DCNv4的YOLOv8目标检测优化:可变形卷积在复杂场景下的高效自适应特征提取方法
2026-01-05
【计算机视觉】基于YOLOv8的模块化目标检测架构设计:科研与工程协同的模型开发框架解析
2026-01-05
基于YOLOv8的目标检测架构解析:从目录结构到核心模块的功能拆解与工程实践应用
2026-01-05
基于YOLOv8的模型架构解析与科研创新路径:从目录结构到轻量化、多模态及自监督检测方法设计
2026-01-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅