
绿色线条为添加ODConv模块后的效果,map指标提升8.66,准确率提升3.44

ODConv模块通过动态调整卷积核的权重,在多个维度上引入了注意力机制。它生成四种类型的注意力权重:通道、卷积核、空间和卷积核选择,允许卷积核根据输入特征动态变化,从而提高了网络的表达能力和适应性。通过这种方式,ODConv能够在不同层次和尺度上灵活地调整特征提取策略,增强模型的性能,尤其适合处理复杂的视觉任务。
文章目录
移植
创建ultralytics\cfg\models\v13\yolov13-ODConv.yaml
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov13n.yaml' will call yolov13.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50

订阅专栏 解锁全文
2576

被折叠的 条评论
为什么被折叠?



