【Python学习系列十三】Python机器学习库scikit-learn实现逻辑回归

逻辑回归基础知识可参考:http://blog.csdn.net/fjssharpsword/article/details/54580552

python内部算法已经实现了,最重要是理解y=f(x)的最小化损失函数并通过梯度下降法求解参数。

这里通过Python机器学习库scikit-learn实现,代码如下:

# -*- coding: utf-8 -*-

import numpy as np
import urllib
from sklearn import preprocessing
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.ensemble import ExtraTreesClassifier
import time

def main(): 
    #数据加载
    # load the CSV file as a numpy matrix
    dataset = np.loadtxt('D:\sample.csv', delimiter=",")
    # separate the data from the target attributes
    X = dataset[:,0:4]
    y = dataset[:,4]

    #数据标准化
    # normalize the data attributes
    normalized_X = preprocessing.normalize(X)
    # standardize the data attributes
    standardized_X = preprocessing.scale(X)

    #特征选取
    #model = Logi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值