推荐算法实现之BMF(pymc3+MovieLen)

BMF是笔者根据PMF(http://papers.nips.cc/paper/3208-probabilistic-matrix-factorization.pdf)和BPMF(https://www.cs.toronto.edu/~rsalakhu/papers/bpmf.pdf)论文思路,自主构建的模型,主要思路是建立MF的概率模型,然后用贝叶斯推断方法(变分)来求解。参考代码如下:

# -*- Encoding:UTF-8 -*-
'''
@author: Jason.F
@data: 2019.07.22
@function: Implementing BMF(Bayesian Matrix Factorization) By VI
           Dataset: Movielen Dataset(ml-1m) 
           Evaluating: hitradio,ndcg
'''
import sys
import time
import logging

import pymc3 as pm
import numpy as np
import pandas as pd
import theano
import theano.tensor as t
import heapq
import math

def getTraindata():
    data = []
    filePath = '/data/fjsdata/ctKngBase/ml/ml-1m.train.rating&#
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值