提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
前言
提示:这里可以添加本文要记录的大概内容:
朴素贝叶斯分类是一种基于贝叶斯定理和特征条件独立假设的监督学习分类算。它广泛应用于文本分类、垃圾邮件过滤、情感分析等领域。本文将通过一个简单的西瓜数据集为例,介绍朴素贝叶斯分类算法的基本原理和实现过程。
提示:以下是本篇文章正文内容,下面案例可供参考
一、什么是贝叶斯?
英国数学家贝叶斯提出了贝叶斯公式用来描述两个条件概率之间的关系,抛出公式如下:
公式指出了在事件B发生的情况下事件A发生的概率,通过贝叶斯公式转换可以利用右边的P(A)和P(B|A)以及P(B)反推出我们的结果P(A|B),而P(B|A)和P(A)以及P(B)则可以通过我们已知的数据集进行统计计算得到,于是P(A|B)的结果得到。
二、西瓜数据集实例
1.西瓜数据集
我们使用的数据集是一个简单的西瓜数据集,包含了西瓜的各种特征信息和对应的分类标签(好瓜/坏瓜)。数据集中的特征包括色泽、根蒂、敲声、纹理、脐部、触感等,标签为好瓜或坏瓜。
代码如下(示例):
#西瓜数据集
def DataSet():
data = [['青绿', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', 0.697, 0.460],
['乌黑', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑', 0.774, 0.376],
['乌黑', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', 0.634, 0.264],
['青绿', '蜷缩', '沉闷', '模糊', '凹陷', '硬滑', 0.608, 0.318],
['浅白', '蜷缩', '浊响', '模糊', '凹陷', '硬滑', 0.556, 0.215],
['青绿', '稍蜷', '浊响', '清晰', '稍凹', '软粘', 0.403, 0.237],
['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '硬滑', 0.481, 0.149],
['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '软粘', 0.437, 0.211]