机器学习模型评估(性能度量)——KNN模型的PR和ROC曲线绘制

本文详细介绍了模型评估的关键性能度量,如混淆矩阵、准确率、精确率、召回率和F1值,重点探讨了KNN模型的ROC曲线和PR曲线绘制,以及如何通过K值的选择优化模型性能。
摘要由CSDN通过智能技术生成

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

模型评估是对训练好的模型性能进行评估, 模型评估是模型开发过程不可或缺的一部分。它有助于发现表达数据的最佳模型和所选模型将来工作的性能如何。
机器学习的任务有回归,分类和聚类,针对不同的任务有不同的评价指标。按照数据集的目标值不同,可以把模型评估分为分类模型评估和回归模型评估。

这篇文章要讲的就是分类模型———KNN模型

一、模型评估的性能度量

1.混淆矩阵

混淆矩阵(Confusion Matrix)是用于衡量分类模型预测性能的一种常见工具。它是一个2x2的矩阵,用于统计模型在二分类问题中的分类结果。混淆矩阵包含四个指标:真正例(True Positive, TP)、真负例(True Negative, TN)、假正例(False Positive, FP)、假负例(False Negative, FN),它们表示模型在预测中的不同情况。

在这里插入图片描述

TP表示模型正确预测为正例的样本数
FN表示模型将正例错误预测为负例的样本数
FP表示模型将负例错误预测为正例的样本数
TN表示模型正确预测为负例的样本数。

由混淆矩阵我们可以求得准确率,精确率等性能度量

2.准确率(Accuracy):分类正确的样本数占总样本数的比例。

确率(Accuracy)是指分类模型对所有样本进行分类的正确率,即分类正确的样本数除以总样本数。准确率是最常用的模型评估指标之一,它可以告诉我们模型在对数据进行分类时的整体表现。

准确率的计算公式为:

Accuracy = (TP + TN)/(TP + TN + FP + FN)

有时,准确率可能并不能反映模型的真实性能,尤其是在数据不平衡的情况下。在这种情况下,模型可能会有很高的准确率,但是对于少数类别的样本预测效果较差。因此,要全面评估模型的性能,我们需要考虑其他指标,例如精确率、召回率和F1值等。

2.精确率(Precision):在被预测为正例的样本中,真正例的比例。

精确率(Precision)是指在所有被模型预测为正例的样本中,真正例的比例。精确率衡量了模型预测为正例的样本中有多少是真正的正例,是评估模型预测结果质量的重要指标之一。

精确率的计算公式为:

Precision = TP/(TP+FP)

精确率越高,说明模型在预测正例时更加准确,假阳性的数量较少。然而,需要注意的是,精确率高并不意味着模型的整体性能就很好,因为它没有考虑到模型可能漏掉的真正例(假阴性)。因此,精确率通常与召回率等指标一起使用,以全面评估模型的性能。

3.召回率(Recall):在所有实际正例样本中,被正确预测为正例的比例

召回率(Recall)是指在所有实际为正例的样本中,被模型预测正确为正例的比例。它衡量了模型能够正确预测出正例样本的能力,是评估分类模型性能的重要指标之一。

召回率的计算公式为:
Recall = (TP)/(TP + FN)

召回率越高,说明模型在识别出实际为正例的样本时表现得越好,假反例的数量较少。但与精确率类似,高召回率并不一定代表模型整体性能良好,因为它没有考虑到模型可能会将负例错误地预测为正例。
在实际应用中,召回率通常与精确率一起使用,以全面评估模型的性能。较高的召回率和精确率通常意味着模型在识别出正例的同时,尽量避免了将负例误判为正例和漏掉真正的正例,达到了更好的平衡。

4.F1值:精确率和召回率的调和平均数。

F1值是精确率和召回率的调和平均数,用于综合评估分类模型的性能。它是精确率和召回率之间的一种权衡指标,能够考虑到两者的平衡情况。

F1值的计算公式为:

2/F1 = 1/Precision + 1/Recall

F1值的取值范围为0到1,其中1表示最佳性能,0表示最差性能。当模型的精确率和召回率同时较高时,F1值也会相应较高。但是,精确率和召回率在某些情况下可能存在一种折衷关系:提高精确率可能会导致召回率下降,反之亦然。因此,F1值可以帮助我们在精确率和召回率之间取得一个平衡。

5.ROC曲线(Receiver Operating Characteristic curve):

ROC曲线使用的指标是真正率(True positive rate, TPR)与假正率 (False positive rate, FPR),其横坐标为FPR, 纵坐标为TPR.

ROC曲线的特点是:随着阈值的不断降低,TPR和FPR会不断增加。随着分类器性能的提高,ROC曲线会不断靠近左上角,AUC(ROC曲线下方面积)也会越来越接近1。因此,通过观察ROC曲线,我们可以了解分类器在不同阈值下的性能表现,而AUC可以作为一个综合性能指标来评估模型的性能优劣。

AUC就是衡量学习器优劣的一种性能指标。从定义可知,AUC可通过对ROC曲线下各部分的面积求和而得。
AUC值越接近1,说明模型的性能越好;而AUC值越接近0.5,则说明模型的性能越差,甚至可能是一个随机猜测的模型。

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/faf6c867743b4722801fe3cf74a8b985.pn

6.PR曲线:

PR曲线(Precision-Recall curve)是一种二分类模型的评估工具,它以精确率(Precision)为纵轴,召回率(Recall)为横轴,描述了模型在不同阈值下的分类性能。

PR曲线下的面积(AP,Average Precision)是PR曲线的一个重要性能指标,通常用来评估模型的整体性能。与AUC类似,AP也是一个取值在0到1之间的指标,其数值越大表示模型的性能越好。在分类器评估中,有时我们更关心模型在稀有类别样本上的表现,此时,AP是一个比准确率和AUC更加准确的判断标准。

在这里插入图片描述

二、KNN模型PR和ROC曲线绘制

1.引入库

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import roc_curve, auc
from sklearn.metrics import precision_recall_curve, average_precision_score

make_classification函数用于生成模拟的二分类数据集,包括特征和标签。
train_test_split函数用于将数据集划分为训练集和测试集。
KNeighborsClassifier用于实现K近邻分类器。
roc_curve函数用于计算 Receiver Operating Characteristic (ROC) 曲线,用于评估分类器的性能。
auc函数用于计算ROC曲线的 Area Under Curve (AUC)。
precision_recall_curve函数用于计算 precision-recall 曲线,用于评估分类器的性能。average_precision_score函数用于计算平均precision,用于评估分类器的性能。

2.生成样本数据

X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42)
#make_classification 函数会返回两个变量:X 和 y。其中,X 是一个 m x n 的二维数组,其中 m 为样本数量,n 为特征数量。y 是一个长度为 m 的向量,表示每个样本的类别标签。

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
#使用train_test_split函数根据指定的test_size参数将数据集X和标签集y分离成训练集和测试集。test_size参数表示测试集的比例,默认值为0.2,表示随机选择20%的数据作为测试集。
#使用random_state参数设置随机数种子,以保证每次运行train_test_split时生成的训练集和测试集是相同的,这样便于比较模型在相同的数据集上的性能。

# 不同的K值
k_values = [1, 5, 10]

使用Python的scikit-learn库中的make_classification函数来生成一个样本数量为100,每个样本特征为20,二分类的分类数据集。

3.KNN模型训练、预测及ROC曲线绘制

调用sklearn库中自带的KNN函数初始化模型,并用数据集进行训练。

# 绘制ROC曲线
plt.figure(figsize=(10, 8))

for k in k_values:
    # 创建并训练KNN分类器
    knn = KNeighborsClassifier(n_neighbors=k)
    knn.fit(X_train, y_train)
    
    # 获取测试集上的预测概率
    y_score = knn.predict_proba(X_test)[:, 1]
    
    # 计算FPR和TPR
    fpr, tpr, _ = roc_curve(y_test, y_score)
    
    # 计算AUC
    roc_auc = auc(fpr, tpr)
    # 绘制ROC曲线
    plt.plot(fpr, tpr, label='K = %d (AUC = %0.2f)' % (k, roc_auc))

使用predict_proba方法获取测试集样本的预测概率,并提取出正类的概率值。

使用predict方法获取测试集样本的预测值。

ROC曲线绘制绘制效果

在这里插入图片描述

4.KNN模型训练、预测及PR曲线绘制

plt.figure(figsize=(10, 8))
# 绘制PR曲线
for k in k_values:
    # 创建并训练KNN分类器
    knn = KNeighborsClassifier(n_neighbors=k)#n_neighbors=k  -->  控制分类器参数
    knn.fit(X_train, y_train)
    
    # 获取测试集上的预测概率
    y_score = knn.predict_proba(X_test)[:, 1]
    
    # 计算精确率和召回率
    precision, recall, _ = precision_recall_curve(y_test, y_score)
    
    # 计算平均准确率
    average_precision = average_precision_score(y_test, y_score)
    
    # 绘制PR曲线
    plt.plot(recall, precision, label='K = %d (平均准确率(Avg Precision) = %0.2f)' % (k, average_precision))
# 设置图形属性

使用roc_curve函数计算了在排序后的标签和预测概率上的假正例率(False Positive Rate)和真正例率(True Positive Rate)。然后,使用auc函数计算了ROC曲线下面积(AUC)。最后,使用matplotlib库绘制了ROC曲线图,并添加了对角线作为参考线。

PR曲线绘制绘制效果:

在这里插入图片描述

5.全部代码:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import roc_curve, auc
from sklearn.metrics import precision_recall_curve, average_precision_score

plt.rcParams["font.family"] = ["SimHei"]  # 确保图中中文字体正确显示
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像时负号'-'显示为方块的问题

# 生成样本数据
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 不同的K值
k_values = [1, 5, 10]
# 绘制ROC曲线
plt.figure(figsize=(10, 8))

for k in k_values:
    # 创建并训练KNN分类器
    knn = KNeighborsClassifier(n_neighbors=k)
    knn.fit(X_train, y_train)
    
    # 获取测试集上的预测概率
    y_score = knn.predict_proba(X_test)[:, 1]
    
    # 计算FPR和TPR
    fpr, tpr, _ = roc_curve(y_test, y_score)
    
    # 计算AUC
    roc_auc = auc(fpr, tpr)
    # 绘制ROC曲线
    plt.plot(fpr, tpr, label='K = %d (AUC = %0.2f)' % (k, roc_auc))
    
# 绘制随机分类器的对角线
plt.plot([0, 1], [0, 1], color='navy', linestyle='--')
# 设置图形属性
plt.xlim([0.0, 1.0])#x的范围
plt.ylim([0.0, 1.05])#y的范围
plt.xlabel('假正例')
plt.ylabel('真正例')
plt.title('ROC曲线')
plt.legend(loc="lower right")
plt.grid(True)#
plt.show()



plt.figure(figsize=(10, 8))
# 绘制PR曲线
for k in k_values:
    # 创建并训练KNN分类器
    knn = KNeighborsClassifier(n_neighbors=k)#n_neighbors=k  -->  控制分类器参数
    knn.fit(X_train, y_train)
    
    # 获取测试集上的预测概率
    y_score = knn.predict_proba(X_test)[:, 1]
    
    # 计算精确率和召回率
    precision, recall, _ = precision_recall_curve(y_test, y_score)
    
    # 计算平均准确率
    average_precision = average_precision_score(y_test, y_score)
    
    # 绘制PR曲线
    plt.plot(recall, precision, label='K = %d (平均准确率(Avg Precision) = %0.2f)' % (k, average_precision))
# 设置图形属性


plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('召回率')
plt.ylabel('精确率')
plt.title('PR曲线')
plt.legend(loc="lower right")#创建图例并放到右下角
plt.grid(True)

plt.show()

总结

常见分类模型评估指标:

准确率(Accuracy):模型预测正确的样本数占总样本数的比例。
精确率(Precision):被模型预测正类的样本中真正为正类的比例。
召回率(Recall):正类样本被模型预测为正类的比例。
F1值:精确率和召回率的调和平均值。
ROC曲线和PR曲线:

ROC曲线描述了不同阈值下的假阳性率(FPR)和真阳性率(TPR)之间的关系。
PR曲线描述了不同阈值下的召回率(Recall)和精确率(Precision)之间的关系。适用于负样本不平衡的情况。
绘制不同K值下的ROC曲线:

在KNN算法中,K值的选择对模型性能有较大影响。
可以通过训练不同K值的KNN模型,绘制其在测试集上的ROC曲线,并比较各个K值下的ROC曲线面积(AUC)大小。
通过分析不同K值下的ROC曲线可以选择合适K值以获得最佳模型性能。
通过实验的学习,我们掌握了分类模型的评估方法和ROC曲线、PR曲线的应用,以及如何利用不同K值绘制和比较KNN模型的ROC曲线。些知识对于深入理解和评价机器学习模型的性能至关重要。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值