POJ1012 Joseph

题目比较简单,因为k不大于14,所以直接使用暴力求解

递推公式为:ans[i];  //第i轮杀掉 对应当前轮的编号为ans[i]的人

ans[0]=0;

ans[i]=(ans[i-1]+m-1)%(n-i+1);   (i>1  ,  总人数n=2k 则n-i为第i轮剩余的人数)

若本题是从0开始报数,则递推式要改变为ans[i]=(ans[i-1]+m)%(n-i); 

#include <iostream>

using namespace std;
int main()
{
    int k;
    int J[14] = {0};
    while(cin >> k)
    {
        if(k==0)
        {
            break;
        }
        if(J[k])
        {
            cout << J[k] << endl;
            continue;
        }

        int n = 2*k; //总人数
        int ans[30] = {0};
        int m = k+1; //m为我所求,初始化为k+1
        for(int i = 1; i <= k; i++)
        {
            ans[i] = (ans[i-1] + m -1)%(n-i+1);
            if(ans[i] < k)
            {
                i = 0;
                m++;
            }
        }
        J[k] = m;
        cout << m << endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值