数据结构和算法
数据结构和算法
fksfdh
这个作者很懒,什么都没留下…
展开
-
pytorch双线性插值
通过floor函数找到下限,floor+1找到上限,但是要防止超过图像的像素坐标值。通过最邻近找到P点,然后需要找到出四个相邻像素点。原公式是右偏移的,新公式中心对其了。使用下面公式,寻找最近一个像素值。将y视为像素值的函数;...原创 2022-07-30 12:40:50 · 5036 阅读 · 2 评论 -
opencv鼠标键盘事件
opencv原创 2022-06-12 03:26:26 · 506 阅读 · 0 评论 -
opencv
opencv原创 2022-06-12 02:49:25 · 136 阅读 · 0 评论 -
pytorch练习小项目
config.pyclass Hyperparameter: # ################################################ # data # ################################################ device = 'cpu' trainset_path = './data/train.txt' testset_path = './dat原创 2022-05-30 00:12:14 · 513 阅读 · 0 评论 -
softmax
import torchimport numpy as npimport matplotlib.pyplot as pltimport matplotlibmatplotlib.rcParams['font.family'] = 'SimHei'#softmaxdef softmax(input): # input = torch.tensor([1,2,3],dtype=torch.float32) sum = np.sum([torch.exp(i) for i in in原创 2022-05-13 20:37:49 · 150 阅读 · 0 评论 -
softmax与交叉熵损失
交叉熵损失函数:softmax:import torchfrom torch import nnmodel_out = torch.tensor([[1,2,3], [4,5,6]],requires_grad=True,dtype=torch.float32)#类别y = torch.tensor( [0,2])ce_mean = nn.CrossEntropyLoss(reduction='mean')loss =原创 2022-05-13 19:20:54 · 347 阅读 · 0 评论 -
pytorch学习记录
1、shape与size()print('*' * 100)print('查看数据形状')data1 = torch.randn((7,3,32,32))print("shape:",data1.shape)print("size:",data1.size())查看数据形状shape: torch.Size([7, 3, 32, 32])size: torch.Size([7, 3, 32, 32])2、squeeze与unsqueeze#压缩print('*' * 100)p原创 2022-05-06 20:36:48 · 445 阅读 · 0 评论 -
sigmoid函数
公式:代码:import mathimport numpy as npimport matplotlib.pyplot as pltdef sigmoid(x): e1 = 1 + pow(math.e,-(x)) e2 = pow(e1,-1) return e2 #导数def d_sigmoid(x): e = sigmoid(x) * (1 - sigmoid(x)) return ex_ = np.arange(-10.原创 2022-05-05 07:58:53 · 451 阅读 · 0 评论 -
N叉树的遍历
N叉树的遍历的迭代和递归实现1、先序遍历//迭代class Solution {public: vector<int> preorder(Node* root) { if(root == NULL) return vector<int>(); vector<int> res; stack<Node*> mystack; mystack.push(root); w原创 2022-03-07 16:02:44 · 397 阅读 · 0 评论 -
Retinaface中match函数的理解
1、网络整体架构在之前首先要知道三个概念:先验框,真实框和预测框在a图中:蓝色和红色框就是真实框,是人为标注的标签。在b图和c图中,因为通过网络进行了下采样后,下采样不同的倍数,得到的每个feature map中每个格子(点)叫做anchor,然后在anchor的基础上,人为定义一些宽高比,图中定义了三种宽高比,然后每个格子都对应了三个先验框。而预测框是在有了先验框之后,通过网络前向计算得到宽高和中心的调整值,然后作用在先验框后,最后得到了预测框。前向预测的解码:在R原创 2022-02-18 20:57:50 · 441 阅读 · 1 评论 -
从103个数中找到出现一次的那三个数
1、从101个数中找到出现一次的那1个数?//101void demo01() { int arr[5] = { 5,7,6,7,5 }; int result; result = 0; for (int i = 0; i < 5; i++) { result ^= arr[i]; } printf("出现一次的那个数=%d\n", result);}2、从102个数中找到出现一次的那2个数?//101int d原创 2021-03-08 18:49:51 · 258 阅读 · 0 评论