自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3887)
  • 资源 (284)
  • 收藏
  • 关注

原创 基于YOLO算改进法系列汇总

csdn博文YOLO改进系列:https://blog.csdn.net/fl1623863129/category_12975070.html?

2025-06-13 10:26:07 921 2

原创 [深度学习]基于YOLO高质量项目源码+模型+GUI界面汇总

以下项目全部是本人亲自编写代码,项目汇总如下:

2024-09-28 11:14:38 1886 1

原创 [数据集汇总]智慧交通-铁路相关数据集汇总

此外,铁轨异物入侵检测数据集能够及时发现并预警潜在的安全隐患,铁轨及卡扣分割数据集、铁轨石枕裂纹缺陷检测数据集等则通过语义分割技术,为铁路维护提供精准的数据支持。智慧交通在铁路领域的应用日益广泛,其数据集汇总涵盖了多个关键方面,为轨道交通、自动化、计算机等专业的研究提供了丰富的资源。这些数据集主要包括铁路手势分类、铁路旁边电气设备检测、铁轨异物入侵检测、铁路铁轨分割、铁轨及卡扣分割、铁轨石枕裂纹缺陷检测等,涵盖了图像分类、目标检测、语义分割等多种技术需求。

2024-09-15 12:12:40 3207

原创 电力行业电气领域相关数据集下载地址汇总输电线路变电站电网应用数据集汇总(全网最全)

例如,输电线路图像数据集通过无人机或直升机拍摄,包含了杆塔、绝缘子、导线等详细图像,为目标检测、分类和异常检测提供了丰富的素材。此外,还有针对变电站烟火检测、导线破损检测等特定任务的数据集,这些数据集通过收集实际场景中的图像和视频,帮助研究人员训练更加精准的算法。电力大数据不仅数据量庞大,类型也多种多样,包括结构化数据如交易电价、售电量等,以及非结构化数据如视频监控图像。通过深度学习和数据挖掘技术,研究人员能够从中发现潜在的模式和规律,为电力行业的决策和规划提供有力支持。

2024-08-23 21:42:27 4931

原创 C# OpenCvSharp DNN Onnx项目源码汇总

本项目涉及C#编程相关,包含深度学习、图像处理、opencvsharp操作等相关编程项目,现在将项目汇总如下:

2024-08-18 08:39:43 985 1

原创 2024年图像分类数据集大合集所有下载地址汇总

2024年目标检测数据集大合集所有下载地址汇总

2024-04-30 07:33:02 2470 1

原创 2024年目标检测数据集大合集所有下载地址汇总

数据集名称下载地址瓷砖瑕疵检测数据集VOC+YOLO标注.zip点我下载道路路标交通标志检测数据集VOC+YOLO格式877张4类别.zip点我下载钢材缺陷检测数据集VOC+YOLO格式386张5类别.7z点我下载中国交通标志检测数据集VOC+YOLO格式5998张58类别.7z点我下载道路交通事故检测数据集VOC+YOLO格式11819张2类别.7z点我下载钢丝绳破损灼伤缺陷检测数据集VOC+YOLO格式1318张2类别.7z点我下载公共场所危险物品检测数据集VOC+YOLO格式1431

2024-04-30 07:30:19 6509 1

原创 智慧交通行人不按规定横穿马路检测数据集VOC+YOLO格式757张2类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["walk_not_zebra","walk_zebra"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证。图片数量(jpg文件个数):757。标注数量(xml文件个数):757。标注数量(txt文件个数):757。

2026-02-01 09:33:25 5

原创 智慧农业不同品种种类青椒辣椒类型检测数据集VOC+YOLO格式1086张4类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["corksrew_chili","linear_chili","red_corksrew_chili","red_linear_chili"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)标注数量(xml文件个数):1086。标注数量(txt文件个数):1086。标注规则:对类别进行画矩形框。

2026-01-31 16:04:06 22

原创 无人机视角智慧交通道路路面减速带斑马线施工道路封闭检测识别分割数据集labelme格式537张4类别

标注类别名称:["speedbreaker","zebracrossing","underconstruction","blockroad"]重要说明:可以将数据集用labelme打开编辑,json数据集需自己转成mask或者yolo格式或者coco格式作语义分割或者实例分割。数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证。标注数量(json文件个数):537。图片数量(jpg文件个数):537。

2026-01-31 14:57:38 25

原创 智慧农业马铃薯土豆损坏发芽发霉缺陷检测数据集VOC+YOLO格式6995张5类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["damaged_potato","defected_potato","diseased_fungal_potato","potato","sprouted_potato"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):6995。标注数量(txt文件个数):6995。

2026-01-31 14:46:41 16

原创 智慧农业辣椒青椒成熟度识别分割数据集labelme格式1257张3类别

重要说明:可以将数据集用labelme打开编辑,json数据集需自己转成mask或者yolo格式或者coco格式作语义分割或者实例分割。数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件)标注类别名称:["rotten","ripe","unripe"]特别声明:本数据集不对训练的模型或者权重文件精度作任何保证。使用标注工具:labelme=5.5.0。标注数量(json文件个数):1257。图片数量(jpg文件个数):1257。图片分辨率:640x640。

2026-01-31 12:46:20 7

原创 智慧农业辣椒颜色青椒绿色青椒红色青椒检测数据集VOC+YOLO格式1475张2类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["green_pepper","red_pepper"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):1475。标注数量(xml文件个数):1475。标注数量(txt文件个数):1475。使用标注工具:labelImg。标注规则:对类别进行画矩形框。

2026-01-31 12:38:11 12

原创 电力场景耐张线夹与绝缘子缺陷检测数据集VOC+YOLO格式2681张7类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["glassInsulator_normal","glassinsulator_crack","polymerinsulator_crack","polymerinsulator_normal","varigrip_nest","varigrip_normal","varigrip_rust"]varigrip_normal (V型线夹正常) 框数 = 1215。标注数量(txt文件个数):2681。

2026-01-31 12:17:01 28

原创 北京地区胡同古建筑风格元素检测数据集VOC+YOLO格式1298张8类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["decoration","eave","folk_style","gate","monument","royal_style","signboard","window"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)标注数量(xml文件个数):1298。标注数量(txt文件个数):1298。

2026-01-31 12:08:14 32

原创 智慧工业厂房内工作人员检测数据集VOC+YOLO格式1339张1类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证。重要说明:数据集没有划分训练验证测试集需自行划分。图片数量(jpg文件个数):1339。标注数量(xml文件个数):1339。标注数量(txt文件个数):1339。标注类别名称:["worker"]使用标注工具:labelImg。标注规则:对类别进行画矩形框。图片分辨率:640x640。

2026-01-31 11:59:26 6

原创 MMA综合格斗动作检测数据集VOC+YOLO格式1780张16类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["block","cross","elbow","high kick","hook","jab","knee","low kick","middle kick","no action","orthodox stance","overhand","southpaw stance","submission","teep","uppercut"]high kick (高踢) 框数 = 24。

2026-01-31 11:30:27 366

原创 智慧农业青椒辣椒成熟度检测数据集VOC+YOLO格式1257张3类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["ripe","rotten","unripe"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):1257。标注数量(xml文件个数):1257。标注数量(txt文件个数):1257。使用标注工具:labelImg。标注规则:对类别进行画矩形框。

2026-01-31 11:20:05 11

原创 无人机视角农村房屋建筑损伤长植物返潮裂缝检测数据集VOC+YOLO格式1304张5类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["crack_wall","moisture_absorption","plaster_damaged","structure_damaged","vegetation_wall"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)标注数量(txt文件个数):1304。标注规则:对类别进行画矩形框。

2026-01-30 20:39:10 25

原创 电力场景变压器指示牌说明牌铭牌检测数据集VOC+YOLO格式1424张1类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["paizi"]特别声明:本数据集不对训练的模型或者权重文件精度作任何保证。图片数量(jpg文件个数):1424。标注数量(xml文件个数):1424。标注数量(txt文件个数):1424。标注规则:对类别进行画矩形框。图片分辨率:640x640。

2026-01-30 20:23:54 15

原创 智慧交通机场设施设备与车辆检测数据集VOC+YOLO格式1821张12类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["aircraft","baggage_truck","bridge_connected","catering_truck","fuel_truck","fueling","ground_power","person","pushback_tractor","rolling_stairway","rump_loader","stairway"]fuel_truck (加油车) 框数 = 773。

2026-01-30 20:16:27 35

原创 牛油果成熟度检测数据集VOC+YOLO格式753张2类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["ripe","unripe"]特别声明:本数据集不对训练的模型或者权重文件精度作任何保证。图片数量(jpg文件个数):753。标注数量(xml文件个数):753。标注数量(txt文件个数):753。标注规则:对类别进行画矩形框。

2026-01-30 20:07:46 7

原创 ROV视角下水下垃圾检测数据集VOC+YOLO格式7265张10类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["bio","rov","trash_etc","trash_fabric","trash_fishing_gear","trash_metal","trash_paper","trash_plastic","trash_rubber","trash_wood"]trash_fishing_gear (渔具垃圾) 框数 = 196。trash_plastic (塑料垃圾) 框数 = 1876。

2026-01-30 19:55:09 58

原创 智慧农业草莓成熟度检测数据集VOC+YOLO格式1627张5类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["early_turning_70","green_50","late_turning_90","red_100","white_60"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)early_turning_70(早期转变成熟度70%) 框数 = 451。标注规则:对类别进行画矩形框。

2026-01-30 15:26:34 38

原创 无人机视角道路树木地面建筑物水体天空草地识别分割数据集labelme格式4806张7类别

重要说明:可以将数据集用labelme打开编辑,json数据集需自己转成mask或者yolo格式或者coco格式作语义分割或者实例分割。标注类别名称:["road","trees","ground","buildings","water","sky","grass"]数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件)buildings (建筑物) count = 12447。标注数量(json文件个数):4802。图片数量(jpg文件个数):4802。

2026-01-30 11:21:56 55

原创 智慧养殖猪只行为状态吃喝躺站检测数据集VOC+YOLO格式2628张6类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["drinking","eating","lying","sitting","sniffing","standing"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):2628。标注数量(xml文件个数):2628。标注数量(txt文件个数):2628。

2026-01-29 20:17:41 250

原创 智慧城市雨水箅子排水设施损坏锈蚀变形堵塞检测数据集VOC+YOLO格式1432张6类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["bianxing","cuowei","duse","queshi","sunhuai","xiushi"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):1432。标注数量(xml文件个数):1432。标注数量(txt文件个数):1432。

2026-01-29 19:59:45 367

原创 智慧交通机场无人机检测数据集VOC+YOLO格式2000张1类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证。重要说明:数据集没有划分训练验证测试集需自行划分。图片数量(jpg文件个数):2000。标注数量(xml文件个数):2000。标注数量(txt文件个数):2000。标注类别名称:["drone"]图片分辨率:1920x1080。使用标注工具:labelImg。标注规则:对类别进行画矩形框。

2026-01-29 15:01:25 120

原创 智慧交通机场飞鸟检测数据集VOC+YOLO格式1500张1类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证。重要说明:数据集没有划分训练验证测试集需自行划分。图片数量(jpg文件个数):1500。标注数量(xml文件个数):1500。标注数量(txt文件个数):1500。标注类别名称:["bird"]图片分辨率:1920x1080。使用标注工具:labelImg。标注规则:对类别进行画矩形框。

2026-01-29 12:43:52 155

原创 智慧园区卡车货车运输车辆进出车头车尾车前车后检测数据集VOC+YOLO格式2483张2类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["truck_back","truck_front"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):2483。标注数量(xml文件个数):2483。标注数量(txt文件个数):2483。使用标注工具:labelImg。标注规则:对类别进行画矩形框。

2026-01-29 10:50:56 105

原创 智慧渔业无人机视角航拍非法捕鱼禁止捕鱼行为检测数据集VOC+YOLO格式1227张3类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["fishing","fishing_boat","fishing_net"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):1227。标注数量(xml文件个数):1227。标注数量(txt文件个数):1227。标注规则:对类别进行画矩形框。采集角度:60-90°。

2026-01-28 17:11:35 224

原创 无人机视角动物牛羊斑马骆驼海豹驴检测数据集VOC+YOLO格式10000张6类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Camel","Seal","Sheep","Zebra","cattle","kiang"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):10000。标注数量(xml文件个数):10000。标注数量(txt文件个数):10000。标注规则:对类别进行画矩形框。

2026-01-28 14:58:39 396

原创 花卉及病虫害检测数据集VOC+YOLO格式2199张44类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)black eyed susan_L (黑心菊_L) 框数 = 33。black eyed susan (黑心菊) 框数 = 338。bougainvillea_L (三角梅_L) 框数 = 8。bellflower_L (风铃草_L) 框数 = 4。sunflower_L (向日葵_L) 框数 = 4。daffodill (水仙花) 框数 = 118。

2026-01-28 14:48:01 324

原创 无人机视角城市街道行人与车辆检测数据集VOC+YOLO格式5291张2类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["car","person"]图片分辨率:多分辨率图片,如1360x765,1400x788等。图片数量(jpg文件个数):5291。标注数量(xml文件个数):5291。标注数量(txt文件个数):5291。标注规则:对类别进行画矩形框。

2026-01-28 12:39:15 103

原创 无人机视角工地挖机渣土车塔吊吊车检测数据集VOC+YOLO格式1363张4类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["diaoche","tadiao","waji","zhatuche"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证。图片数量(jpg文件个数):1363。标注数量(xml文件个数):1363。标注数量(txt文件个数):1363。

2026-01-28 12:28:11 314

原创 智慧纺织业布料孔洞节疤开缝抽丝划痕缝皱毛粒污渍撕裂缺陷检测数据集VOC+YOLO格式2045张10类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Hole","Knot","Line","Open Seam","Pull Thread","Scratch","Seam Puckering","Slub","Stain","Tear"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)标注数量(txt文件个数):2045。

2026-01-28 10:56:12 244

原创 焊缝焊接处裂纹气孔飞溅缺陷检测数据集VOC+YOLO格式1494张6类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Bad Welding","Crack","Excess Reinforcement","Good Welding","Porosity","Spatters"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):1494。标注数量(txt文件个数):1494。

2026-01-28 09:43:27 301

原创 无人机视角智慧河道巡检河道违建河道违规建筑检测数据集VOC+YOLO格式1034张1类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["illegal_construction"]特别声明:本数据集不对训练的模型或者权重文件精度作任何保证。图片数量(jpg文件个数):1034。标注数量(xml文件个数):1034。标注数量(txt文件个数):1034。标注规则:对类别进行画矩形框。

2026-01-27 20:36:48 134

原创 无人机视角河道巡检治理垃圾淤泥植被排水沟障碍物识别分割数据集labelme格式2777张12类别

标注类别名称:["河道内植被", "河道", "建筑", "天然排水沟", "人工排水沟", "坑洞", "岩石", "垃圾", "淤泥", "桥梁", "涵洞", "障碍物"]重要说明:可使用labelme打开并编辑数据集,json数据集需自行转换为mask、yolo或coco格式以用于语义分割或实例分割。数据集格式:labelme格式(不包含mask文件,仅包含jpg图片及对应的json文件)特别声明:本数据集不对使用其训练的模型或权重文件的精度作任何保证。标注数量(json文件个数):2777。

2026-01-27 19:44:47 351

原创 电力场景输电线路防外力破坏检测数据集VOC+YOLO格式1106张5类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["backhoe","crane","tower","tree","truck"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)crane (起重机) 框数 = 375。图片数量(jpg文件个数):1106。标注数量(xml文件个数):1106。标注数量(txt文件个数):1106。

2026-01-27 18:39:20 283

C++cmake基于C++在windows上onnxruntime+opencv部署yolo26-obb的旋转框检测onnx模型源码

安装好yolo26环境,要求ultralytics==8.4.0,转换命令 yolo export model=yolo26n-obb.pt format=onnx opset=12 测试环境: vs2019 cmake==3.30.1 onnxruntime-win-x64-gpu-1.20.1 opencv==4.9.0 运行步骤: 先删除build文件夹 然后打开CMakeLists.txt里面opencv和onnxruntime路径 重新cmake后会生成exe 测试命令:切换到exe路径后执行 测试图片: YOLO26_ort --input=test.jpg 测试摄像头: YOLO26_ort --input=0 [--gpu] 注意运行gpu需要安装onnxruntime-win-x64-gpu-1.20.1对应cuda这个官方可以查询到,测试cuda12.4+cudnn9.4.1可以其他版本应该也可以看要求 测试视频: YOLO26_ort --input=test_video.mp4 --output=result.mp4 --conf=0.3 细节参考博文:https://blog.csdn.net/FL1623863129/article/details/157067180

2026-01-17

C++cmake基于C++在windows上onnxruntime+opencv部署yolo26-seg的实例分割onnx模型源码

安装好yolo26环境,要求ultralytics==8.4.0,转换命令 yolo export model=yolo26n-seg.pt format=onnx opset=12 测试环境: vs2019 cmake==3.30.1 vs2019 onnxruntime-win-x64-gpu-1.20.1 opencv==4.9.0 运行步骤: 先删除build文件夹 然后打开CMakeLists.txt里面opencv和onnxruntime路径 重新cmake后会生成exe 测试命令:切换到exe路径后执行 测试图片: yolo26_ort --input=test.jpg 测试摄像头: yolo26_ort --input=0 [--gpu] 注意运行gpu需要安装onnxruntime-win-x64-gpu-1.20.1对应cuda这个官方可以查询到,测试cuda12.4+cudnn9.4.1可以其他版本应该也可以看要求 测试视频: yolo26_ort --input=test_video.mp4 --output=result.mp4 --conf=0.3 具体参考博文:https://blog.csdn.net/FL1623863129/article/details/157063570

2026-01-17

C++cmake基于C++在windows上onnxruntime+opencv部署yolo26-pose的姿态估计关键点检测onnx模型源码

安装好yolo26环境,要求ultralytics==8.4.0,转换命令 yolo export model=yolo26n-pose.pt format=onnx opset=12 测试环境: vs2019 cmake==3.30.1 onnxruntime-win-x64-gpu-1.20.1 opencv==4.9.0 运行步骤: 先删除build文件夹 然后打开CMakeLists.txt里面opencv和onnxruntime路径 重新cmake后会生成exe 测试命令:切换到exe路径后执行 测试图片: yolo26_ort --input=test.jpg 测试摄像头: yolo26_ort --input=0 [--gpu] 注意运行gpu需要安装onnxruntime-win-x64-gpu-1.20.1对应cuda这个官方可以查询到,测试cuda12.4+cudnn9.4.1可以其他版本应该也可以看要求 测试视频: yolo26_ort --input=test_video.mp4 --output=result.mp4 --conf=0.3

2026-01-17

C++cmake基于C++在windows上onnxruntime+opencv部署yolo26的图像分类onnx模型源码

【测试环境】 vs2019 cmake==3.30.1 opencv==4.8.0 onnxruntime==1.16.3 【运行步骤】 通过cmake编译出exe后,执行 yolo26-cls.exe 【图片路径】即可 详情参考博文:https://blog.csdn.net/FL1623863129/article/details/157060353

2026-01-17

C++cmake基于C++在windows上使用纯opencv部署yolo26的图像分类onnx模型源码

【测试环境】 vs2019 cmake==3.30.1 opencv==4.8.0 【运行步骤】 通过cmake编译出exe后,执行 yolo26-cls.exe 【图片路径】即可 具体参考博文:https://blog.csdn.net/FL1623863129/article/details/157059061

2026-01-17

C# winform部署yolo26目标检测的onnx模型演示源码+模型+说明.7z

模型使用官方yolo26n.pt转换成的onnx,转换命令 yolo export model=yolo26n.pt format=onnx opset=12 如果你是自己训练的模型可以替换即可,但是需要yolo26框架才行 测试环境: vs2019 CPU推理,无需安装cuda+cudnn onnxruntime==1.20.1 opecvsharp==4.9.0 .net framework4.7.2 ultralytics==8.4.0 效果参考博文:https://blog.csdn.net/FL1623863129/article/details/156951940

2026-01-14

C++cmake基于C++在windows上部署yolo26的目标检测onnx模型源码

测试环境: windows10 x64 vs2019 cmake==3.30.1 onnxruntime-gpu==1.20.1 opencv==4.12.0 使用步骤: 首先cmake生成exe文件,然后将onnxruntime.dll和onnxruntime_providers_shared.dll放到exe一起,不然会提示报错0x0000007b,这是因为系统目录也有个onnxruntime.dll引发冲突,并把car.mp4也放到exe一起。运行直接输入 yolo26.exe C:\Users\Administrator\Desktop\yolo26-onnx-cplus\models\yolo26n.onnx 注意onnx路径要是你真实路径我的onnx路径是我桌面上地址 详情参考博文:https://blog.csdn.net/FL1623863129/article/details/157032411

2026-01-16

C# winform使用纯opencvsharp部署yolo26-cls图像分类的onnx模型源码.7z

【测试环境】 vs2019 net framework4.7.2 opencvsharp4.8.0 使用opencv作为推理引擎,CPU推理无需安装cuda+cudnn 运行效果参考博文:https://blog.csdn.net/FL1623863129/article/details/157021338

2026-01-16

C# winform部署yolo26-obb旋转框检测的onnx模型演示源码+模型+说明.7z

模型使用官方yolo26n-obb.pt转换成的onnx,转换命令 yolo export model=yolo26n-obb.pt format=onnx opset=12 如果你是自己训练的模型可以替换即可,但是需要yolo26-obb框架才行 测试环境: vs2019 CPU推理,无需安装cuda+cudnn onnxruntime==1.22.1 opecvsharp==4.11.0 .net framework4.8.0 ultralytics==8.4.0 运行效果参考博文:https://blog.csdn.net/FL1623863129/article/details/157018036

2026-01-16

C# winform部署yolo26-pose姿态估计关键点的onnx模型演示源码+模型+说明.7z

测试环境: vs2019 CPU推理,无需安装cuda+cudnn onnxruntime1.22.1 opecvsharp4.11.0 .net framework4.8.0 ultralytics==8.4.0 运行效果参考博文:https://blog.csdn.net/FL1623863129/article/details/156992820

2026-01-15

基于RK3588上推理YOLO26s部署C++源码+项目说明+视频讲解.zip

这是一个可以在RK3588上运行的yolo26-demo项目,项目自带有量化后的官方模型可以进行测试使用。

2026-01-15

本科毕业设计基于机器学习的加密恶意流量检测python源码+项目说明.zip

本项目是本科毕设题目,依托参考项目课题组完成,首先向课题组表示感谢;其次,项目是关于机器学习的加密恶意流量检测,本人首次接触这个方向,是纯小白,内容不是很饱满,但是本项目针对自己的论文结构进行了web页面展示,方便熟悉论文结构框架的同时,呈现了一个基本的加密恶意流量检测的流程。最后,希望有不足之处可以得到谅解、有问题之处可以提出并相互学习! 环境 所需环境:Python 3.8(ubuntu20.04)、zeek version 7.0.0-dev.102,Zeek flowmeter 安装所需要的包——requirements.txt中罗列主要的包,如遇到相关包未安装的报错问题,自行安装即可。 web界面 本项目是基于Flask和bootstrap进行开发,是一个简单的可视化任务。 运行项目:终端中进入项目的文件夹,执行指令“python app.py”。

2026-01-15

玉米叶子病害检测数据集VOC+YOLO格式4154张4类别.7z

注意数据集中大约1/3是原图剩余为增强图片主要为旋转增强 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):4154 标注数量(xml文件个数):4154 标注数量(txt文件个数):4154 标注类别数:4 标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["healthy","huiban","xiubing","yeban"] 每个类别标注的框数: healthy(健康) 框数 = 1589 huiban(灰斑) 框数 = 1246 xiubing(锈病) 框数 = 1499 yeban(叶斑) 框数 = 986 总框数:5320 图片分辨率:640x640 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证 图片例子参考博文:https://blog.csdn.net/FL1623863129/article/details/156262587

2026-01-15

C# winform部署yolo26-seg实例分割的onnx模型演示源码+模型+说明.7z

测试环境: vs2019 CPU推理,无需安装cuda+cudnn onnxruntime==1.22.1 opecvsharp==4.11.0 .net framework4.8.0 ultralytics==8.4.0 运行效果图参考博文:https://blog.csdn.net/FL1623863129/article/details/156984032

2026-01-15

ultralytics-yolo26官方所有n和s号的pt模型文件.zip

yolo26所有pytorch的n和s模型列表如下: yolo26n-cls.pt yolo26n-obb.pt yolo26n-pose.pt yolo26n-seg.pt yolo26n.pt yolo26s-cls.pt yolo26s-obb.pt yolo26s-pose.pt yolo26s-seg.pt yolo26s.pt

2026-01-14

VMware卸载清理工具.zip

VMware卸载清理工具.zip

2026-01-07

基于yolo11实现的车辆实时交通流量进出统计与速度测量系统python源码+演示视频.7z

项目实现细节和效果参考博文:https://blog.csdn.net/FL1623863129/article/details/156640919

2026-01-06

毕业设计STM32智能小区充电桩系统源码+原理图.zip

1.功能详解 基于STM32的智能小区充电桩系统,功能如下: 车辆进出数量记录:光电传感器采集记录车辆出入个数 LED指示灯:车辆出入时闪烁提醒 环境温湿度采集:SHT-30采集环境温湿度 危险气体报警:MQ-7判断危险气体是否超标 OLED显示:显示进出车辆个数、温湿度信息和一氧化碳浓度 蜂鸣器报警:温湿度、危险气体超过阈值范围报警 机智云APP:手机端app远程监视数据、节阈值与控制报警模式开关 2.材料清单 • STM32F103C8T6最小系统板 • OLED显示屏(4针I2C协议) • SHT-30温湿度传感器 • 光电红外传感器 • MQ-7一氧化碳传感器 • 蜂鸣器

2026-01-02

毕业设计基于STM32基于机智云的智能温室大棚系统源码+电路图+元件清单.zip

1.功能详解 基于STM32的机智云智慧农业系统。功能如下: 温湿度采集:使用DHT11温湿度传感器采集环境温湿度 土壤湿度采集:通过土壤湿度模块采集土壤湿度 光照强度采集:通过光敏电阻采集环境光照强度 二氧化碳浓度采集:通过CO2气敏传感器检测二氧化碳浓度 土壤温度采集:通过DS18B20传感器采集土壤温度 风扇控制:可自动模式下根据环境温度触发或手动模式下APP开闭 水泵控制:可自动模式下根据土壤湿度触发或手动模式下APP开闭 LED照明灯控制:可自动模式下根据环境光强触发或手动模式下按键开闭 通风口:通过步进电机模拟通风口 OLED显示:将检测到的环境数据显示在oled屏幕上 蜂鸣器报警:危险情况下本地蜂鸣器触发报警 APP功能:使用机智云APP,包括功能有控制并显示风扇、水泵、通风口和补光灯状态,选择工作模式为手动或自动模式,显示当前环境温湿度、土壤温湿度以及光照强度和二氧化碳浓度信息 2.材料清单 • STM32F103C8T6最小系统板 • DHT11温湿度传感器 • OLED显示屏(4针I2C协议) • WiFi模块(ESP8266-01s) • 土壤湿度传感器 • DS18B20温度传感器 • 28BYJ51步进电机 • 二氧化碳传感器 • 光敏传感器 • 5V风扇模块 • 5V水泵模块 • 蜂鸣器 • LED灯

2026-01-02

毕业设计STM32单片机智能大棚系统源码+原理图.zip

1.功能详解 基于STM32的智慧农业系统。功能如下: 温湿度采集:使用DHT11温湿度传感器采集环境温湿度 土壤湿度采集:通过土壤湿度模块采集土壤湿度 光照强度采集:通过BH1750模块采集环境光照强度 二氧化碳浓度采集:通过CCS811模块采集环境二氧化碳浓度 风扇控制:可自动模式下根据环境温度触发或手动模式下按键开闭 水泵控制:可自动模式下根据土壤湿度触发或手动模式下按键开闭 LED照明灯控制:自动模式下根据环境光强触发或手动模式下按键开闭 蜂鸣器报警:二氧化碳浓度超标时蜂鸣器报警 TFT显示屏显示:显示环境温湿度、土壤湿度、光照强度、二氧化碳浓度和工作模式等信息。 工作模式选择:按键选择工作模式为自动、手动或者云端 OneNET云端:通过旧版OneNET网页平台查看设备上报的实时数据。 2.材料清单 • STM32F103C8T6最小系统板 • 1.8寸TFT显示屏 • DHT11温湿度传感器 • BH1750光照传感器 • 土壤湿度传感器 • CCS811二氧化碳传感器 • WiFi模块(ESP8266-01s) • 大功率LED照明灯模块 • 5V风扇模块 • 5V水泵模块 • 继电器 • 蜂鸣器

2026-01-02

pycharm社区版安装包linux版本pycharm-community-2020.3.5.tar.gz

pycharm社区版安装包linux版本pycharm-community-2020.3.5.tar.gz

2026-01-29

pycharm社区安装包pycharm-community-2020.3.5.dmg

pycharm社区安装包pycharm-community-2020.3.5.dmg

2026-01-29

建筑物墙面墙壁裂缝发霉渗水油漆剥落检测数据集VOC+YOLO格式2920张5类别.7z

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2920 标注数量(xml文件个数):2920 标注数量(txt文件个数):2920 标注类别数:5 所在github仓库:firc-dataset 标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["crack","mold","peeling_paint","stairstep_crack","water_seepage"] 每个类别标注的框数: crack (裂缝) 框数 = 2773 mold (霉菌) 框数 = 134 peeling_paint (油漆剥落) 框数 = 306 stairstep_crack (阶梯状裂缝) 框数 = 311 water_seepage (渗水) 框数 = 149 总框数:3673 图片分辨率:640x640 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证 图片例子参考博文:https://blog.csdn.net/2403_88102872/article/details/156846746

2026-01-28

chromedriver-win64-144.0.7559.110.zip

这个chromedriver为windows x64系统使用,对应谷歌浏览器版本为144.0.7559.110,注意不适合linux和macOS系统。注意本资源为不定时更新,本次更新时间:2016-01-28

2026-01-20

电力场景输电线路防外力破坏检测数据集VOC+YOLO格式1106张5类别.7z

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):1106 标注数量(xml文件个数):1106 标注数量(txt文件个数):1106 标注类别数:5 所在github仓库:firc-dataset 标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["backhoe","crane","tower","tree","truck"] 每个类别标注的框数: backhoe (反铲挖掘机) 框数 = 639 crane (起重机) 框数 = 375 tower (塔/塔吊) 框数 = 1444 tree (树木) 框数 = 596 truck (卡车) 框数 = 1069 总框数:4123 图片分辨率:多分辨率图片,如1920x1080,1293x972等 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:数据集没有划分训练验证测试集需自行划分 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证 数据集图片示例和介绍参考博文:https://blog.csdn.net/FL1623863129/article/details/157437439

2026-01-27

OpenSim-4.3-win64.exe

OpenSim-4.3-win64.exe

2026-01-26

基于python实现PDF批量加水印工具源码+打包好的exe+说明文档.7z

本软件是一款便捷的PDF文档处理工具,主要功能包括: 1. 支持批量对指定文件夹中的PDF文件添加自定义文字水印 2. 可灵活调整水印文字内容、字体大小、旋转角度、透明度等参数 3. 支持设置水印的行间距和列间距,控制水印在页面中的分布密度 4. 采用多线程处理技术,避免界面冻结,同时实时显示处理进度和日志信息 三、使用方法: 运行程序后会出现一个图形化操作窗口: 1. 通过"选择"按钮分别指定PDF文件夹和输出文件夹路径 2. 在水印设置区域输入水印文字,并调整字体大小、角度、间距和透明度等参数 3. 点击"开始加水印"按钮启动处理过程,可通过进度条和日志框查看实时处理状态 4. 处理完成后可在输出文件夹中找到添加了水印的PDF文件(文件名后缀为_watermarked.pdf) 5. 如需中断处理可点击"重置服务"按钮 界面参考博文:https://blog.csdn.net/2403_88102872/article/details/157330177

2026-01-24

基于python+tkinter实现的Modbus-RTU 通信工具+数据可视化源码.7z

项目简介 Modbus-RTU 通信工具是一个基于 Python Tkinter 开发的图形界面应用程序,旨在帮助用户轻松地与 Modbus 设备进行通信。该工具支持多种功能码的读写操作,可以用于工业自动化设备的调试、监控和数据分析。 界面效果参考博文:https://blog.csdn.net/2403_88102872/article/details/157330051

2026-01-24

基于yolov8的无人机视角夜间车辆检测识别系统python源码+onnx模型+评估指标曲线+精美GUI界面.7z

项目源码细节参考博文:https://blog.csdn.net/FL1623863129/article/details/157221252 【使用步骤】 使用步骤: (1)首先根据官方框架安装好yolov8环境,并安装好pyqt5 (2)切换到自己安装的yolov8环境后,并切换到源码目录,执行python main.py即可运行启动界面,进行相应的操作即可 【提供文件】 python源码 yolov8n.onnx模型(不提供pytorch模型) 训练的map,P,R曲线图(在weights\results.png) 测试图片(在test_img文件夹下面) 注意源码提供训练的数据集

2026-01-21

基于yolov8的夜间车辆检测识别系统python源码+onnx模型+评估指标曲线+精美GUI界面.7z

项目详细情况参考博文:https://blog.csdn.net/FL1623863129/article/details/157220611 【使用步骤】 使用步骤: (1)首先根据官方框架安装好yolov8环境,并安装好pyqt5 (2)切换到自己安装的yolov8环境后,并切换到源码目录,执行python main.py即可运行启动界面,进行相应的操作即可 【提供文件】 python源码 yolov8n.onnx模型(不提供pytorch模型) 训练的map,P,R曲线图(在weights\results.png) 测试图片(在test_img文件夹下面) 注意源码提供训练的数据集

2026-01-21

睡觉检测睡觉和没睡觉识别检测数据集VOC YOLO格式511张2类别.7z

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):511 标注数量(xml文件个数):511 标注数量(txt文件个数):511 标注类别数:2 所在仓库:firc-dataset 标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["normal","sleep"] 每个类别标注的框数: normal 框数 = 325 sleep 框数 = 517 总框数:842 使用标注工具:labelImg 图片分辨率:640x640 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证 图片参考博文:https://blog.csdn.net/FL1623863129/article/details/154521337

2026-01-21

yolo26n.onnx

官方预训练模型直接从pytorch模型转的onnx模型,这个是目标检测模型即coco能识别的80类

2026-01-21

yolo26n-pose.onnx

官方预训练模型直接从pytorch模型转的onnx模型

2026-01-21

yolo26n-obb.onnx

官方预训练模型直接从pytorch模型转的onnx模型

2026-01-21

yolo26n-seg.onnx

官方预训练模型直接从pytorch模型转的onnx模型

2026-01-21

yolo26n-cls.onnx

官方预训练模型直接从pytorch模型转的onnx模型

2026-01-21

python本科毕业设计基于神经网络的虚假评论识别系统源码+训练好的模型+说明文档.zip

python本科毕业设计基于神经网络的虚假评论识别系统源码+训练好的模型+说明文档.zip

2026-01-21

基于Yolov5目标检测和deepsort目标跟踪无人机跟踪python源码.zip

基于Yolov5目标检测和deepsort目标跟踪无人机跟踪python源码.zip

2026-01-21

基于AVEC2014数据集和Resnet网络实现的抑郁症诊断项目python源码+数据集.zip

基于AVEC2014数据集和Resnet网络实现的抑郁症诊断项目python源码+数据集.zip

2026-01-21

C++cmake使用C++部署yolo26目标检测的tensorrt模型源码

测试通过环境: vs2019 windows 10 RTX2070 8G显存 cmake==3.30.1 cuda11.8.0+cudnn8.9.7 Tensorrt==8.6.1.6 opencv==4.9.0 anaconda3+python3.10 torch==2.5.1+cu124 详情参考博文:https://blog.csdn.net/FL1623863129/article/details/157098894

2026-01-18

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除