自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1561)
  • 资源 (284)
  • 收藏
  • 关注

原创 [大模型]Qwen-1_8B-chat CPU 部署

本文介绍了在 Intel 设备上部署 Qwen 1.8B 模型的过程,你需要至少16GB内存的机器来完成这项任务,我们将使用英特尔的大模型推理库来实现完整过程。Bigdl-llm 是一个在英特尔设备上运行 LLM(大语言模型)的加速库,通过 INT4/FP4/INT8/FP8 精度量化和架构针对性优化以实现大模型在 英特尔 CPU、GPU上的低资源占用与高速推理能力(适用于任何 PyTorch 模型)。

2024-04-18 06:45:05 251

原创 [大模型]Qwen-7B-Chat Lora 低精度微调

LoraConfig这个类中可以设置很多参数,但主要的参数没多少,简单讲一讲,感兴趣的同学可以直接看源码。task_type:模型类型:需要训练的模型层的名字,主要就是attention部分的层,不同的模型对应的层的名字不同,可以传入数组,也可以字符串,也可以正则表达式。rlora的秩,具体可以看Lora原理lora_alphaLora alaph,具体作用参见Lora原理Lora的缩放是啥嘞?当然不是r(秩),这个缩放就是, 在这个LoraConfig中缩放就是4倍。

2024-04-18 06:43:01 364

原创 [大模型]Qwen-7B-Chat 接入langchain搭建知识库助手

在autodl平台中租一个3090等24G显存的显卡机器,如下图所示镜像选择PyTorch–>2.0.0–>3.8(ubuntu20.04)–>11.8接下来打开刚刚租用服务器的JupyterLab,并且打开其中的终端开始环境配置、模型下载和运行demo。pip换源和安装依赖包。

2024-04-18 06:42:20 444

原创 [大模型]Qwen-7B-chat 全量微调

首先我们要准训练模型的代码,这里我们使用的modelscope上的模型,大家自行下载即可。OK,模型下载完毕之后,我们就要准备代码文件。其实全量微调和Lora微调的代码基本一样,都采用了Trainer类来进行训练。只不过在全量微调的时候没有加载LoraConfig,那我就直接给出代码,如果对代有什么问题,大家可以先自行探索Qwen lora的代码解释,有什么不懂的地方可以提Issue。需要把代码中的模型地址修改一下,改成自己的模型地址。

2024-04-18 06:40:20 199

原创 [大模型]Qwen-7B-Chat Ptuning 微调

参考数据加载与模型配置与一致,在此具体讲一下Ptuning的细节:基本原理为冻结主模型全部参数,在训练数据前加入一小段Prompt,之训练Prompt的嵌入层。在Ptuning中,只有soft prompt,是自动学习的,不用人工设置。

2024-04-18 06:39:07 76

原创 [大模型]Qwen-7B-Chat Lora 微调

LoraConfig这个类中可以设置很多参数,但主要的参数没多少,简单讲一讲,感兴趣的同学可以直接看源码。task_type:模型类型:需要训练的模型层的名字,主要就是attention部分的层,不同的模型对应的层的名字不同,可以传入数组,也可以字符串,也可以正则表达式。rlora的秩,具体可以看Lora原理lora_alphaLora alaph,具体作用参见Lora原理Lora的缩放是啥嘞?当然不是r(秩),这个缩放就是, 在这个LoraConfig中缩放就是4倍。

2024-04-18 06:36:05 253

原创 [大模型]Qwen-7B-Chat WebDemo

在autodl平台中租一个3090等24G显存的显卡机器,如下图所示镜像选择PyTorch–>2.0.0–>3.8(ubuntu20.04)–>11.8接下来打开刚刚租用服务器的JupyterLab,并且打开其中的终端开始环境配置、模型下载和运行demo。pip换源和安装依赖包。

2024-04-18 06:35:20 244

原创 [大模型]Qwen-7B-hat Transformers 部署调用

在autodl平台中租一个3090等24G显存的显卡机器,如下图所示镜像选择PyTorch–>2.0.0–>3.8(ubuntu20.04)–>11.8接下来打开刚刚租用服务器的JupyterLab,并且打开其中的终端开始环境配置、模型下载和运行demo。pip换源和安装依赖包。

2024-04-18 06:34:11 96

原创 [大模型]MiniCPM-2B-chat WebDemo部署

MiniCPM 是面壁智能与清华大学自然语言处理实验室共同开源的系列端侧大模型,主体语言模型 MiniCPM-2B 仅有 24亿(2.4B)的非词嵌入参数量。经过 SFT 后,MiniCPM 在公开综合性评测集上,MiniCPM 与 Mistral-7B相近(中文、数学、代码能力更优),整体性能超越 Llama2-13B、MPT-30B、Falcon-40B 等模型。

2024-04-18 06:32:42 360

原创 [大模型]MiniCPM-2B-chat transformers 部署调用

MiniCPM 是面壁智能与清华大学自然语言处理实验室共同开源的系列端侧大模型,主体语言模型 MiniCPM-2B 仅有 24亿(2.4B)的非词嵌入参数量。经过 SFT 后,MiniCPM 在公开综合性评测集上,MiniCPM 与 Mistral-7B相近(中文、数学、代码能力更优),整体性能超越 Llama2-13B、MPT-30B、Falcon-40B 等模型。

2024-04-18 06:29:34 369

原创 [VS]cmake在windows上运行build命令

VS2022VS2019VS2017VS2015。

2024-04-17 21:00:12 136

原创 [大模型]MiniCPM-2B-chat FastApi 部署调用

MiniCPM 是面壁智能与清华大学自然语言处理实验室共同开源的系列端侧大模型,主体语言模型 MiniCPM-2B 仅有 24亿(2.4B)的非词嵌入参数量。经过 SFT 后,MiniCPM 在公开综合性评测集上,MiniCPM 与 Mistral-7B相近(中文、数学、代码能力更优),整体性能超越 Llama2-13B、MPT-30B、Falcon-40B 等模型。

2024-04-17 07:28:39 444 1

原创 [大模型]InternLM2-7B-chat Xtuner Qlora 微调

XTuner 训练多轮对话模型时,采取了一种更加充分高效的方法,如下图所示。我们将多轮对话进行拼接,之后输入模型,并行计算每个位置的 loss,而只有 Output 部分的 loss 参与回传。[{",},",},",},",},",},",}]数据集中的 “conversation” 键对应的值是一个列表,用于保存每一轮对话的指令和实际回答(GroundTruth)。

2024-04-17 07:25:20 603

原创 [大模型]InternLM2-7B-chat WebDemo 部署

InternLM2 ,即书生·浦语大模型第二代,开源了面向实用场景的70亿参数基础模型与对话模型 (InternLM2-Chat-7B)。

2024-04-17 07:23:12 362

原创 [大模型]InternLM2-7B-chat langchain 接入

InternLM2 ,即书生·浦语大模型第二代,开源了面向实用场景的70亿参数基础模型与对话模型 (InternLM2-Chat-7B)。

2024-04-17 07:21:15 469

原创 [python][gradio]密码验证

在首次打开网页前,可以设置账户密码。比如auth参数为(账户,密码)的元组数据。这种模式下不能够使用queue函数。如果想设置更为复杂的账户密码和密码提示,可以通过函数设置校验规则。

2024-04-16 09:44:59 281

原创 [python][gradio]chatbot控件用法

chatbot模块是Gradio中的一个组件,用于展示聊天机器人的输出,包括用户提交的消息和机器人的回复。它支持一些Markdown语法,包括粗体、斜体、代码和图片等。Chatbot模块的输入不接受用户输入,而是通过函数返回的列表来设置聊天内容。返回的列表应包含多个内部列表,每个内部列表包含两个元素:用户消息和机器人回复。消息可以是字符串、元组或None。如果消息是字符串,可以包含Markdown格式的文本。如果消息是元组,应包含文件路径和可选的替代文本。值为None的消息将不会显示在聊天界面上。

2024-04-16 09:42:02 308

原创 [大模型]基于 InternLM 和 LangChain 搭建知识库助手

首先在AutoDL上租一台显卡驱动支持11.7以上的双卡3090机器.在选择镜像是选择Miniconda-->conda3-->–>11.6打开中的终端,首先运行以下命令安装接下来运行以下命令,安装gradio等依赖包。请严格安装以下版本安装!

2024-04-16 08:15:19 360

原创 [大模型]InternLM2-7B-chat FastAPI 部署

首先在AutoDL上租一台显卡驱动支持11.7以上的双卡3090机器.在选择镜像是选择Miniconda-->conda3-->–>11.6打开中的终端,首先运行以下命令安装接下来运行以下命令,安装gradio等依赖包。请严格安装以下版本安装!

2024-04-16 08:14:30 276

原创 [大模型]浦语灵笔图文理解&创作

首先在AutoDL上租一台显卡驱动支持11.7以上的双卡3090机器.在选择镜像是选择Miniconda-->conda3-->–>11.6打开中的终端,首先运行以下命令安装接下来运行以下命令,安装gradio等依赖包。请严格安装以下版本安装!

2024-04-16 08:13:28 204

原创 [大模型]Lagent+InternLM-Chat-7B-V1.1

选择和第一个InternLM一样的AutoDL镜像环境,运行以下命令安装依赖,如果上一个已经配置好环境不需要重复安装.

2024-04-16 08:12:26 226

原创 [大模型]InternLM-Chat-7B 对话 Web

在平台中租一个3090等24G显存的显卡机器,如下图所示镜像选择PyTorch–>1.11.0–>–>11.3接下来打开刚刚租用服务器的JupyterLab,并且打开其中的终端开始环境配置、模型下载和运行demo。pip换源和安装依赖包。

2024-04-16 08:11:39 274

原创 [大模型]internLM-Chat-7B FastApi 部署调用

在平台中租一个3090等24G显存的显卡机器,如下图所示镜像选择PyTorch–>1.11.0–>–>11.3接下来打开刚刚租用服务器的JupyterLab,并且打开其中的终端开始环境配置、模型下载和运行demo。pip换源和安装依赖包。

2024-04-16 08:10:01 372

原创 [大模型]InternLM-Chat-7B Transformers 部署调用

粘贴代码后记得保存文件,上面的代码有比较详细的注释,大家如有不理解的地方,欢迎提出issue。(魔塔社区)中的snapshot_download函数下载模型,第一个参数为模型名称,参数。平台中租一个3090等24G显存的显卡机器,如下图所示镜像选择。执行下载,模型大小为14GB,下载模型大概需要10~20分钟。粘贴代码后记得保存文件(Ctrl+S),如下图所示。,并且打开其中的终端开始环境配置、模型下载和运行。保存后返回终端界面,运行。文件并在其中输入以下内容。在终端输入以下命令启动。

2024-04-16 08:09:01 211

原创 [python]prophet运行报错NameError: name ‘go‘ is not defined

最近在学习fbprophet时,按照安装步骤,搭建好环境之后,使用官方教程进行学习。在执行到下面这句时报错。如果已经安装plotly,这里就不需要安装了。

2024-04-16 08:06:52 107

原创 关于下载EsayOCR模型总是连接中断报错

下载好模型之后就需要解压文件,然后把.pth文件放到C:\Users\你的用户名\.EasyOCR\。因为网络问题,自动下载总是失败报错,所以只好去网上手动下载训练好的模型。文件下,就可以正常使用啦。

2024-04-15 17:01:49 138

原创 [大模型]DeepSeek-MoE-16b-chat Transformers 部署调用

DeepSeek MoE目前推出的版本参数量为160亿,实际激活参数量大约是28亿。与自家的7B密集模型相比,二者在19个数据集上的表现各有胜负,但整体比较接近。而与同为密集模型的Llama 2-7B相比,DeepSeek MoE在数学、代码等方面还体现出来明显的优势。但两种密集模型的计算量都超过了180TFLOPs每4k token,DeepSeek MoE却只有74.4TFLOPs,只有两者的40%。

2024-04-15 07:57:08 425

原创 [大模型]DeepSeek-MoE-16b-chat FastApi 部署调用

DeepSeek MoE目前推出的版本参数量为160亿,实际激活参数量大约是28亿。与自家的7B密集模型相比,二者在19个数据集上的表现各有胜负,但整体比较接近。而与同为密集模型的Llama 2-7B相比,DeepSeek MoE在数学、代码等方面还体现出来明显的优势。但两种密集模型的计算量都超过了180TFLOPs每4k token,DeepSeek MoE却只有74.4TFLOPs,只有两者的40%。

2024-04-15 07:56:14 319 1

原创 [大模型]DeepSeek-7B-chat 4bits量化 QLora 微调

LoraConfig这个类中可以设置很多参数,但主要的参数没多少,简单讲一讲,感兴趣的同学可以直接看源码。task_type:模型类型:需要训练的模型层的名字,主要就是attention部分的层,不同的模型对应的层的名字不同,可以传入数组,也可以字符串,也可以正则表达式。rlora的秩,具体可以看Lora原理lora_alphaLora alaph,具体作用参见Lora原理Lora的缩放是啥嘞?当然不是r(秩),这个缩放就是, 在这个LoraConfig中缩放就是4倍。

2024-04-15 07:55:07 797

原创 [大模型]DeepSeek-7B-chat Lora 微调

LoraConfig这个类中可以设置很多参数,但主要的参数没多少,简单讲一讲,感兴趣的同学可以直接看源码。task_type:模型类型:需要训练的模型层的名字,主要就是attention部分的层,不同的模型对应的层的名字不同,可以传入数组,也可以字符串,也可以正则表达式。rlora的秩,具体可以看Lora原理lora_alphaLora alaph,具体作用参见Lora原理Lora的缩放是啥嘞?当然不是r(秩),这个缩放就是, 在这个LoraConfig中缩放就是4倍。

2024-04-15 07:54:32 434

原创 [大模型]DeepSeek-7B-chat WebDemo 部署

由70亿个参数组成的高级语言模型 DeepSeek LLM。它是在一个包含2万亿个英文和中文代币的庞大数据集上从零开始训练的。为了促进研究,DeepSeek 已经为研究社区开放了DeepSeek LLM 7B/67B Base 和 DeepSeek LLM 7B/67B Chat。

2024-04-15 07:53:52 308

原创 [大模型]DeepSeek-7B-chat langchain 接入

这篇主要讲如何对接Langchain中的LLM模块,其他关于如何对接向量数据库和gradio的部分请参考模块。

2024-04-15 07:53:00 274

原创 [大模型]DeepSeek-7B-chat FastApi 部署调用

由70亿个参数组成的高级语言模型 DeepSeek LLM。它是在一个包含2万亿个英文和中文代币的庞大数据集上从零开始训练的。为了促进研究,DeepSeek 已经为研究社区开放了DeepSeek LLM 7B/67B Base 和 DeepSeek LLM 7B/67B Chat。

2024-04-15 07:52:11 401

原创 [python]gurobi安装和配置

gurobipy是一种Python接口,用于与商业数学软件Gurobi中的C ++库进行通信。gurobipy通过提供高层次的Python方法,使得使用gurobipy更加容易,并且在遵循Gurobi许可证条款的前提下可以免费使用。lb:变量的下限(如果存在)ub:变量的上限(如果存在)vtype:变量类型(GB.GRB.CONTINUOUS,GB.GRB.BINARY,或GB.GRB.INTEGER)name:为变量设置名称。

2024-04-15 07:38:03 708

原创 [matlab]gurobi安装和配置

注意,由于optimize函数默认是最小化目标函数,因此如果对于max的目标,应当取一个负号。完成Gurobi的注册安装和激活后,在matlab中,将gurobi的路径添加至matlab即可完成配置。(Gurobi向邮件发送验证码后,通常要过一段时间才能收到邮件,短则几分钟,多则半天。随后,要申请gurobi学术版的使用,需要使用.edu后缀的邮箱进行注册。复制上面的命令,然后进入cmd,输入上述命令,即可完成gurobi的激活。并且,可以看到相关的问题,其默认的求解器已经变成了Gurobi。

2024-04-15 07:32:34 430

原创 [matlab]matcaffe在matlab2023a安装和配置过程

将C:\Users\Administrator\Desktop\caffe-windows\build\install\matlab\+caffe\private\Release里面的caffe_.mexw64放到上一级目录中即。添加目录是C:\Users\Administrator\Desktop\caffe-windows\build\install\matlab\+caffe。放入C:\Users\Administrator\Desktop\caffe-windows\matlab\demo。

2024-04-15 07:19:26 1473

原创 在Mac中打开终端的3种方法

在使用Mac时,有时需要深入研究设置,或者完成一些开发人员级的命令行任务。为此,你需要终端应用程序来访问macOS上的命令行。下面是如何启动它。

2024-04-14 21:10:19 290

原创 ’caffe,Net类析构函数时,捕获到以下错误: 错误使用caffe Could not convert handle to pointer due to invalid init key

caffe,Net类析构函数时,捕获到以下错误: 错误使用caffe Could not convert handle to pointer due to invalid init key。

2024-04-14 16:19:30 117

原创 [大模型]BlueLM-7B-Chat Lora 微调

LoraConfig这个类中可以设置很多参数,但主要的参数没多少,简单讲一讲,感兴趣的同学可以直接看源码。task_type:模型类型:需要训练的模型层的名字,主要就是attention部分的层,不同的模型对应的层的名字不同,可以传入数组,也可以字符串,也可以正则表达式。rlora的秩,具体可以看Lora原理lora_alphaLora alaph,具体作用参见Lora原理Lora的缩放是啥嘞?当然不是r(秩),这个缩放就是, 在这个LoraConfig中缩放就是4倍。

2024-04-14 06:34:09 669

原创 [大模型] BlueLM-7B-Chat WebDemo 部署

BlueLM-7B 是由 vivo AI 全球研究院自主研发的大规模预训练语言模型,参数规模为 70 亿。BlueLM-7B 在和上均取得领先结果,对比同尺寸开源模型中具有较强的竞争力(截止11月1号)。本次发布共包含 7B 模型的 Base 和 Chat 两个版本。

2024-04-14 06:32:55 378

Acquisition-4.8-cp39-cp39-manylinux_2_5_i686.whl.zip

Acquisition-4.8-cp39-cp39-manylinux_2_5_i686.whl.zip

2024-04-15

Acquisition-4.8-cp38-cp38-win_amd64.whl.zip

Acquisition-4.8-cp38-cp38-win_amd64.whl.zip

2024-04-15

Acquisition-4.8-cp38-cp38-win32.whl.zip

Acquisition-4.8-cp38-cp38-win32.whl.zip

2024-04-15

Acquisition-4.8-cp39-cp39-macosx_10_14_x86_64.whl.zip

Acquisition-4.8-cp39-cp39-macosx_10_14_x86_64.whl.zip

2024-04-15

Acquisition-4.8-cp38-cp38-manylinux_2_5_i686.whl.zip

Acquisition-4.8-cp38-cp38-manylinux_2_5_i686.whl.zip

2024-04-15

Acquisition-4.8-cp38-cp38-manylinux_2_17_aarch64.whl.zip

Acquisition-4.8-cp38-cp38-manylinux_2_17_aarch64.whl.zip

2024-04-15

Acquisition-4.8-cp38-cp38-manylinux_2_5_x86_64.whl.zip

Acquisition-4.8-cp38-cp38-manylinux_2_5_x86_64.whl.zip

2024-04-15

Acquisition-4.8-cp36-cp36m-win_amd64.whl.zip

Acquisition-4.8-cp36-cp36m-win_amd64.whl.zip

2024-04-15

Acquisition-4.8-cp36-cp36m-win32.whl.zip

Acquisition-4.8-cp36-cp36m-win32.whl.zip

2024-04-15

Acquisition-4.8-cp37-cp37m-manylinux_2_5_x86_64.whl.zip

Acquisition-4.8-cp37-cp37m-manylinux_2_5_x86_64.whl.zip

2024-04-15

Acquisition-4.8-cp37-cp37m-macosx_10_14_x86_64.whl.zip

Acquisition-4.8-cp37-cp37m-macosx_10_14_x86_64.whl.zip

2024-04-15

Acquisition-4.8-cp37-cp37m-manylinux_2_5_i686.whl.zip

Acquisition-4.8-cp37-cp37m-manylinux_2_5_i686.whl.zip

2024-04-15

Acquisition-4.8-cp36-cp36m-manylinux_2_17_aarch64.whl.zip

Acquisition-4.8-cp36-cp36m-manylinux_2_17_aarch64.whl.zip

2024-04-15

Acquisition-4.8-cp27-cp27m-win_amd64.whl.zip

Acquisition-4.8-cp27-cp27m-win_amd64.whl.zip

2024-04-15

Acquisition-4.8-cp27-cp27m-macosx_10_14_x86_64.whl.zip

Acquisition-4.8-cp27-cp27m-macosx_10_14_x86_64.whl.zip

2024-04-15

Acquisition-4.7-cp37-cp37m-win32.whl.zip

Acquisition-4.7-cp37-cp37m-win32.whl.zip

2024-04-15

Acquisition-4.7-cp38-cp38-win_amd64.whl.zip

Acquisition-4.7-cp38-cp38-win_amd64.whl.zip

2024-04-15

Acquisition-4.7-cp38-cp38-win32.whl.zip

Acquisition-4.7-cp38-cp38-win32.whl.zip

2024-04-15

Acquisition-4.6-cp37-cp37m-win32.whl.zip

Acquisition-4.6-cp37-cp37m-win32.whl.zip

2024-04-15

Acquisition-4.7-cp27-cp27m-win_amd64.whl.zip

Acquisition-4.7-cp27-cp27m-win_amd64.whl.zip

2024-04-15

Acquisition-4.8-cp39-cp39-manylinux_2_17_aarch64.whl.zip

Acquisition-4.8-cp39-cp39-manylinux_2_17_aarch64.whl.zip

2024-04-15

Acquisition-4.8-cp39-cp39-win_amd64.whl.zip

Acquisition-4.8-cp39-cp39-win_amd64.whl.zip

2024-04-15

Acquisition-4.8-cp39-cp39-manylinux_2_5_x86_64.whl.zip

Acquisition-4.8-cp39-cp39-manylinux_2_5_x86_64.whl.zip

2024-04-15

Acquisition-4.8-cp39-cp39-win32.whl.zip

Acquisition-4.8-cp39-cp39-win32.whl.zip

2024-04-15

Acquisition-4.8-cp37-cp37m-win_amd64.whl.zip

Acquisition-4.8-cp37-cp37m-win_amd64.whl.zip

2024-04-15

Acquisition-4.8-cp37-cp37m-win32.whl.zip

Acquisition-4.8-cp37-cp37m-win32.whl.zip

2024-04-15

Acquisition-4.8-cp38-cp38-macosx_10_14_x86_64.whl.zip

Acquisition-4.8-cp38-cp38-macosx_10_14_x86_64.whl.zip

2024-04-15

Acquisition-4.8-cp37-cp37m-manylinux_2_17_aarch64.whl.zip

Acquisition-4.8-cp37-cp37m-manylinux_2_17_aarch64.whl.zip

2024-04-15

Acquisition-4.8-cp36-cp36m-manylinux_2_5_i686.whl.zip

Acquisition-4.8-cp36-cp36m-manylinux_2_5_i686.whl.zip

2024-04-15

Acquisition-4.8-cp36-cp36m-manylinux_2_5_x86_64.whl.zip

Acquisition-4.8-cp36-cp36m-manylinux_2_5_x86_64.whl.zip

2024-04-15

Acquisition-4.8-cp35-cp35m-win_amd64.whl.zip

Acquisition-4.8-cp35-cp35m-win_amd64.whl.zip

2024-04-15

Acquisition-4.8-cp27-cp27m-win32.whl.zip

Acquisition-4.8-cp27-cp27m-win32.whl.zip

2024-04-15

Acquisition-4.8-cp35-cp35m-win32.whl.zip

Acquisition-4.8-cp35-cp35m-win32.whl.zip

2024-04-15

Acquisition-4.8-cp36-cp36m-macosx_10_14_x86_64.whl.zip

Acquisition-4.8-cp36-cp36m-macosx_10_14_x86_64.whl.zip

2024-04-15

Acquisition-4.7-cp36-cp36m-win_amd64.whl.zip

Acquisition-4.7-cp36-cp36m-win_amd64.whl.zip

2024-04-15

Acquisition-4.7-cp36-cp36m-win32.whl.zip

Acquisition-4.7-cp36-cp36m-win32.whl.zip

2024-04-15

Acquisition-4.7-cp37-cp37m-win_amd64.whl.zip

Acquisition-4.7-cp37-cp37m-win_amd64.whl.zip

2024-04-15

Acquisition-4.7-cp35-cp35m-win_amd64.whl.zip

Acquisition-4.7-cp35-cp35m-win_amd64.whl.zip

2024-04-15

Acquisition-4.7-cp35-cp35m-win32.whl.zip

Acquisition-4.7-cp35-cp35m-win32.whl.zip

2024-04-15

Acquisition-4.7-cp27-cp27m-win32.whl.zip

Acquisition-4.7-cp27-cp27m-win32.whl.zip

2024-04-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除