可解释性机器学习——从金融科技视角(2)

本文探讨了从金融科技角度出发的可解释性机器学习,分为模型内在解释(如限制模型复杂性和算法设计)和模型训练后分析(如特征重要性计算)。文章还讨论了局部解释和全局解释的区别,以及不同模型的适用性,重点介绍了神经网络的解释方法和最新进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

可解释性机器学习——从金融科技视角(2)

内容摘要:解释方法的分类



1、模型内在的解释(I)or 模型训练后的分析(A)

本系列按照这个分类顺序进行介绍
模型内在的解释:通过限制机器学习模型复杂性,分析算法设计。
模型训练后的分析:例如,计算决策树的排列特征重要性。


2、根据解释方法的结果划分

  • Feature summary statistic(特征汇总统计)

计算特征重要性、特征成对交互强度

  • Feature summary visualization(可视化)

绘制曲线发现依赖关系

  • Model internals (模型内部结构和参数)

如神经网络习得的权重

  • Data point(通过数据视角分析)

其中一种方法称为反事实解释:为了解释对某一数据实例的预测,该方法通过改变一些特征来找到类似的数据点,而预测结果会以相关的方式发生变化(如预测类别变化)。另一个例子是识别预测类别的实质:输出新数据点的可解释模型发挥作用,必须对数据点本身进行解释。这对图像和文

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值