可解释性机器学习——从金融科技视角(2)
内容摘要:解释方法的分类
文章目录
1、模型内在的解释(I)or 模型训练后的分析(A)
本系列按照这个分类顺序进行介绍
模型内在的解释:通过限制机器学习模型复杂性,分析算法设计。
模型训练后的分析:例如,计算决策树的排列特征重要性。
2、根据解释方法的结果划分
- Feature summary statistic(特征汇总统计)
计算特征重要性、特征成对交互强度
- Feature summary visualization(可视化)
绘制曲线发现依赖关系
- Model internals (模型内部结构和参数)
如神经网络习得的权重
- Data point(通过数据视角分析)
其中一种方法称为反事实解释:为了解释对某一数据实例的预测,该方法通过改变一些特征来找到类似的数据点,而预测结果会以相关的方式发生变化(如预测类别变化)。另一个例子是识别预测类别的实质:输出新数据点的可解释模型发挥作用,必须对数据点本身进行解释。这对图像和文