x 的平方根
-
给你一个非负整数 x ,计算并返回 x 的 算术平方根 。
-
由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。
注意: 不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。
示例 1:
输入:x = 4
输出:2
示例 2:
输入:x = 8
输出:2
解释:8 的算术平方根是 2.82842…, 由于返回类型是整数,小数部分将被舍去。
解题思路
使用牛顿迭代法通过逐步逼近来找到平方根。
- 1、如果 x 小于 2,直接返回 x 本身。
- 2、初始化 r 为 x。
- 3、使用迭代公式更新 r:r = (r + x / r) / 2,直到 r * r 不大于 x。
Java实现
public class Sqrt {
public int mySqrt(int x) {
if (x < 2) {
return x;
}
long r = x;
while (r * r > x) {
r = (r + x / r) / 2;
}
return (int) r;
}
// 测试用例
public static void main(String[] args) {
Sqrt solution = new Sqrt();
System.out.println(solution.mySqrt(4)); // 期望输出: 2
System.out.println(solution.mySqrt(8)); // 期望输出: 2
System.out.println(solution.mySqrt(16)); // 期望输出: 4
System.out.println(solution.mySqrt(1)); // 期望输出: 1
}
}
时间空间复杂度
- 时间复杂度:O(log x),收敛速度非常快。
- 空间复杂度:O(1),只使用了常数级别的额外空间。