93、生物传感器与肌电图信号分析中的模拟与优化

生物传感器与肌电图信号分析中的模拟与优化

在生物科技和医学研究领域,微流控集成生物传感器和高密度表面肌电图(HDEMG)信号分析是两个重要的研究方向。前者有助于实现更高效的生物检测,后者则在运动单元识别等方面具有重要意义。下面将详细介绍相关的研究内容。

微流控集成生物传感器的数值模拟

在微流控集成生物传感器的研究中,输入浓度对结合循环有着显著影响。研究中保持流量(Q = 1.7×10⁻¹⁰ m³/s)恒定,改变输入浓度,具体情况如下表所示:
| 名称 | 输入浓度 (Mol/m³) | 饱和时间 (s) |
| ---- | ---- | ---- |
| Case 4 | 10⁻⁸ | 8.2 × 10³ |
| Case 5 | 10⁻⁵ | 4.3 × 10³ |
| Case 6 | 10⁻² | 1.6 × 10³ |

从表中数据可以看出,随着输入浓度的增加,饱和时间显著减少,且这种变化是非线性的。同时,结合期(阶段4)的形状也发生了明显改变。

为了对微流控集成生物传感器内的流动进行建模,研究人员开发了一种基于控制体积有限元方法(CVFEM)的全保守微流控集成生物传感器流动求解器。该模型将所有对流 - 扩散 - 朗缪尔方程进行全耦合求解,并采用高阶离散化方法。初步结果与实验数据进行了验证,表明该模型使用了精确的流动参数、吸附/解离速率和扩散常数,具有较高的可靠性和鲁棒性。

研究还发现,入口速度和浓度的变化会对微流控集成生物传感器的响应时间产生显著影响,这些变化会影响饱和时间和结合循环阶段的形状,且呈现非线性变化。该模型适用于多种几何形状和操作条件,有助于设计更高效的微流控集成生物传

本项目聚焦于运用卷积神经网络技术进行人体姿态动作的识别分析。核心程序模块包含四个组成部分:姿态检测模块、训练数据采集模块、模型训练模块以及主程序模块。 在姿态检测模块中,构建了一个姿态识别类,该类整合了两种关键方法。第一种方法通过调用现成的骨骼点识别接口处理输入图像,获取人体关键节点信息并将识别结果存储在特定变量中;第二种方法则利用可视化工具包,将检测到的骨骼节点在图像中进行标注并建立连接关系。 训练数据采集模块实现了图像存储功能,该模块通过调用图像处理库的存储接口,将采集到的样本图像保存至本地存储设备,为后续模型训练阶段提供数据支持。 模型训练模块定义了完整的卷积神经网络训练流程。该模块首先调用数据采集模块保存的图像数据集,通过多层级卷积运算提取图像特征,采用反向传播算法优化网络参数,最终生成可用于动作分类的识别模型。整个训练过程包含数据预处理、网络结构配置、损失函数计算和参数优化等标准步骤。 项目采用模块化设计理念,各功能组件之间保持高度独立性,通过清晰的接口定义实现数据交互。技术实现方面,结合了深度学习框架计算机视觉库,构建了从数据采集到模型训练的全流程解决方案。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值