生物传感器与肌电图信号分析中的模拟与优化
在生物科技和医学研究领域,微流控集成生物传感器和高密度表面肌电图(HDEMG)信号分析是两个重要的研究方向。前者有助于实现更高效的生物检测,后者则在运动单元识别等方面具有重要意义。下面将详细介绍相关的研究内容。
微流控集成生物传感器的数值模拟
在微流控集成生物传感器的研究中,输入浓度对结合循环有着显著影响。研究中保持流量(Q = 1.7×10⁻¹⁰ m³/s)恒定,改变输入浓度,具体情况如下表所示:
| 名称 | 输入浓度 (Mol/m³) | 饱和时间 (s) |
| ---- | ---- | ---- |
| Case 4 | 10⁻⁸ | 8.2 × 10³ |
| Case 5 | 10⁻⁵ | 4.3 × 10³ |
| Case 6 | 10⁻² | 1.6 × 10³ |
从表中数据可以看出,随着输入浓度的增加,饱和时间显著减少,且这种变化是非线性的。同时,结合期(阶段4)的形状也发生了明显改变。
为了对微流控集成生物传感器内的流动进行建模,研究人员开发了一种基于控制体积有限元方法(CVFEM)的全保守微流控集成生物传感器流动求解器。该模型将所有对流 - 扩散 - 朗缪尔方程进行全耦合求解,并采用高阶离散化方法。初步结果与实验数据进行了验证,表明该模型使用了精确的流动参数、吸附/解离速率和扩散常数,具有较高的可靠性和鲁棒性。
研究还发现,入口速度和浓度的变化会对微流控集成生物传感器的响应时间产生显著影响,这些变化会影响饱和时间和结合循环阶段的形状,且呈现非线性变化。该模型适用于多种几何形状和操作条件,有助于设计更高效的微流控集成生物传
订阅专栏 解锁全文
40

被折叠的 条评论
为什么被折叠?



