背包 and 动态规划 初步了解

动态规划
每个问题都可以划分为几个阶段去分段进行
这些阶段即为子问题
而每个子问题都有最优解
最后得到的全局最优解 在子问题中也定为最优解
每个阶段我们会有一个状态转移方程
由k阶段到k+1阶段状态的演变规律,称为状态转移方程。

以装箱问题为例

要求n个物品中,任取若干个装入箱内,使总价值最大。
对于每一个物体,都有两种状态:装 与不装

因为每个物体,都有装与不装两种选择,所以我们得到状态转移方程:

dp[j]=max(dp[j],dp[j-w[i]]+w[i]);

dp[j] :当总容量为 j 时,不放第 i 件物品,所能装的最大体积。
dp[j-w[i]]+w[i] :当总容量为 j 时,放了第 i 件物品后,所能装的最大体积。(即 j减去第 i 件物品体积 的容量能装的最大体积+第 i 件物品的体积。w[i] 为第 i 件物品体积)

(这里我们运用的是动态规划 )
但是我觉得其实这就是01背包啊
没有什么本质的区别
就是打模版啦

现在来总结下
我们发现简单的dp就只有这几种模板–

①01背包问题(无优化):

for(i=1;i<=n;i++)
     for(j=cost[i];j<=V;j++){
        dp[i][j]=max(dp[i-1][j-cost[i]]+val[i],dp[i-1][j]); 
             //当前物品,放还是不放 
         }

②01背包问题(1维优化):

//dp[j]表示体积为j的时候的最大价值
 for(i=1;i<=n;i++)
     for(j=V;j>=cost[i];j--)
         dp[j]=max(dp[j],dp[j-cost[i]]+val[i]);

③完全背包:

for (int i = 1; i <= 5; i++)
        for (int j = w[i]; j <= 10;j++)
                dp[j] = max(dp[j],dp[j - w[i]] + v[i]);

④多重背包问题:

for(int i=1; i<=n; i++) {
	if(w[i]*a[i]>m)     {
		for(int c=0; c<=m; c++)         {
			if(c>=w[i]) f[c]=max(f[c],f[c-w[i]]+v[i]);
		}
	}     else     {
		k=1;
		amount=a[i];
		while(k<amount)          {
			for(int c=k*w[i]; c>=0; c--)              {
				if(c>=w[i])   f[c]=max(f[c],f[c-w[i]]+k*v[i]);
			}
			amount-=k;
			k<<=1;
		}
		for(int c=amount*w[i]; c>=0; c--)          {
			f[c]=max(f[c],f[c-w[i]]+amount*v[i]);
		}
	}
}

好了今天就到此为止吧

经过简单的学习 我们对背包有了一个初步了解
然后呢
想要深入了解一下背包的小盆友们建议去看看背包九讲
强烈安利!!!

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值