# 等分贝塞尔曲线工具类

package
{
import flash.geom.Point;
public class Bezier
{

//  对外变量
private static var p0:Point;					// 起点
private static var p1:Point;					// 贝塞尔点
private static var p2:Point;					// 终点
private static var step:uint;					// 分割份数

//  辅助变量
private static var ax:int;
private static var ay:int;
private static var bx:int;
private static var by:int;

private static var A:Number;
private static var B:Number;
private static var C:Number;

private static var total_length:Number;			// 长度

//  速度函数
private static function s (t:Number):Number
{
return Math.sqrt(A * t * t + B * t + C);
}

//  长度函数
private static function L (t:Number):Number
{
var temp1:Number = Math.sqrt(C + t * (B + A * t));
var temp2:Number = (2 * A * t * temp1 + B *(temp1 - Math.sqrt(C)));
var temp3:Number = Math.log(B + 2 * Math.sqrt(A) * Math.sqrt(C));
var temp4:Number = Math.log(B + 2 * A * t + 2 * Math.sqrt(A) * temp1);
var temp5:Number = 2 * Math.sqrt(A) * temp2;
var temp6:Number = (B * B - 4 * A * C) * (temp3 - temp4);

return (temp5 + temp6) / (8 * Math.pow(A, 1.5));
}

//  长度函数反函数，使用牛顿切线法求解
private static function InvertL (t:Number, l:Number):Number
{
var t1:Number = t;
var t2:Number;
do
{
t2 = t1 - (L(t1) - l)/s(t1);
if (Math.abs(t1-t2) < 0.000001) break;
t1 = t2;
}while(true);
return t2;
}

//  返回所需总步数
public static function init ($p0:Point,$p1:Point, $p2:Point,$speed:Number):uint
{
p0   = $p0; p1 =$p1;
p2   = $p2; //step = 30; ax = p0.x - 2 * p1.x + p2.x; ay = p0.y - 2 * p1.y + p2.y; bx = 2 * p1.x - 2 * p0.x; by = 2 * p1.y - 2 * p0.y; A = 4*(ax * ax + ay * ay); B = 4*(ax * bx + ay * by); C = bx * bx + by * by; // 计算长度 total_length = L(1); // 计算步数 step = Math.floor(total_length /$speed);
if (total_length % $speed >$speed / 2)	step ++;

trace("曲长：" + total_length);
trace("步数：" + step);
return step;
}

// 根据指定nIndex位置获取锚点：返回坐标和角度
public static function getAnchorPoint (nIndex:Number):Array
{
if (nIndex >= 0 && nIndex <= step)
{
var t:Number = nIndex/step;
//  如果按照线行增长，此时对应的曲线长度
var l:Number = t*total_length;
//  根据L函数的反函数，求得l对应的t值
t = InvertL(t, l);

//  根据贝塞尔曲线函数，求得取得此时的x,y坐标
var xx:Number = (1 - t) * (1 - t) * p0.x + 2 * (1 - t) * t * p1.x + t * t * p2.x;
var yy:Number = (1 - t) * (1 - t) * p0.y + 2 * (1 - t) * t * p1.y + t * t * p2.y;

//  获取切线
var Q0:Point = new Point((1 - t) * p0.x + t * p1.x, (1 - t) * p0.y + t * p1.y);
var Q1:Point = new Point((1 - t) * p1.x + t * p2.x, (1 - t) * p1.y + t * p2.y);

//  计算角度
var dx:Number = Q1.x - Q0.x;
var dy:Number = Q1.y - Q0.y;
var degrees:Number = radians * 180 / Math.PI;

return new Array(xx, yy, degrees);
}
else
{
return [];
}
}
}
}