19、量子密码学与SHOR分解算法

量子密码学与SHOR分解算法

1. 量子密码学与大数分解的挑战

在密码学中,大数分解是一个关键问题。例如,RSA加密算法的安全性就基于分解大整数的困难性。以RSA - 768的分解为例,它是一个非常大的数:

40479274737794080665351419597459856902143413
= 33478071698956898786044169848212690817704794983
  71376856891243138898288379387800228761471165253
  1743087737814467999489
× 36746043666799590428244633799627952632279158164
  34308764267603228381573966651127923337341714339
  6810270092798736308917

目前,分解任意大整数 (N) 被认为是最好的经典方法是(通用)数域筛法(NFS)。该方法所需的计算步骤 (S_{NFS}(N)) 随着 (N) 趋于无穷大时的增长速率为:
[S_{NFS}(N) \in O\left(\exp\left(\left(\frac{64}{9} + o(1)\right)^{\frac{1}{3}} (\log_2 N)^{\frac{1}{3}} (\log_2 \log_2 N)^{\frac{2}{3}}\right)\right)]
即使有时使用数百台计算机,分解RSA - 768也几乎需要三年的实际时间。使用单个2.2 GHz、2 GB RAM的Opte

内容概要:本文详细介绍了一个基于Python实现的锂电池剩余寿命(RUL)预测项目,采用Transformer-LSTM混合深度学习模型,结合GUI界面实现智能化预测可视化分析。项目涵盖从数据生成、特征工程、模型构建(Transformer自注意力机制LSTM时序建模融合)、训练优化、性能评估到实际部署的全流程。通过滑动窗口采样、数据归一化、多维度评估指标(MSE、MAE、R²、RMSE、MAPE)及残差分析,确保模型高精度鲁棒性。同时集成注意力权重LSTM隐状态可视化功能,提升模型可解释性,并设计了完整的GUI交互系统,支持数据加载、模型热插拔推理预测结果动态展示。; 适合人群:具备一定Python编程基础和深度学习知识,熟悉PyTorch框架的数据科学从业者、研究生及从事新能源、智能制造、电池管理系统开发的工程师。; 使用场景及目标:①应用于新能源汽车、储能电站、消费电子等领域的电池健康管理;②实现锂电池剩余寿命的高精度动态预测,支持智能运维故障预警;③为科研人员提供可复现、可扩展的深度学习时序建模实例,推动电池寿命预测技术的工程化落地。; 阅读建议:建议读者结合代码文档逐步实践,重点关注数据预处理、模型结构设计GUI集成部分,尝试在本地环境中运行并调试程序,深入理解TransformerLSTM协同工作机制,同时可扩展多模态输入或轻量化部署以适应更多应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值