量子计算中的Shor分解算法与公钥密码学
1. Shor分解算法概述
Shor分解算法是一种量子算法,用于对非平凡合数进行因式分解。其基本步骤如下:
1. 随机选择与互质测试 :随机选择一个位于区间 $[2, N - 2]$ 内的整数 $x$,并计算 $GCD(x, N)$。若 $GCD(x, N) > 1$,则需重新选择 $x$,以确保 $x$ 与 $N$ 互质。
2. 寻找阶数 :通过量子相位测量或估计 $\tilde{\phi} = s’/r’$,并利用连分数展开算法得到 $r’ = r$,这里的 $r$ 是 $x$ 模 $N$ 的阶数。接着检查 $x^{r’} \equiv 1 \pmod{N}$ 是否成立,若不成立则需重新进行相位测量。同时,要确保 $r$ 为偶数,且 $y = x^{r/2} \not\equiv -1 \pmod{N}$ 是一个非平凡解。
3. 计算最大公约数 :计算 $GCD(y \pm 1, N)$,得到 $N$ 的两个因子 $N’$ 和 $N’‘$。然后对 $N’$ 和 $N’‘$ 进行“前置”测试,判断是否需要进一步使用Shor算法进行因式分解。
4. 递归分解 :若有必要,可从步骤1开始,依次对 $N’$ 和 $N’‘$ 进行因式分解,直至得到 $N$ 的完整质因数分解 $N = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_k}$。
2. 以 $N = 15$ 为例的Shor算法实现
为了更好地理解S