LeetCode腾讯精选练习50题-292.Nim游戏

题目描述

  • 两个人一起玩 Nim 游戏:
  • 桌子上有一堆石头。你们轮流进行自己的回合, 你作为先手。
  • 每一回合,轮到的人拿掉 1 - 3 块石头。拿掉最后一块石头的人就是获胜者。
  • 假设你们每一步都是最优解。请编写一个函数,来判断你是否可以在给定石头数量为 n 的情况下赢得游戏。
  • 如果可以赢,返回 true;否则,返回 false。
example
input  : n = 4
output : false
note   : 1. 你移除1颗石头;你的朋友移走了3块石头,包括最后一块。你的朋友赢了。
         2. 你移除2颗石头;你的朋友移走2块石头,包括最后一块。你的朋友赢了。
         3. 你移走3颗石头;你的朋友移走了最后一块石头。你的朋友赢了。
         => 在所有结果中,你的朋友是赢家。
input  : n = 1
output : true
note   : 你移除1颗石头。你赢了。
input  : n = 2
output : true
note   : 你移除2个石头。你赢了。

解题思路

  • 逐步增加石头数量来做分析
  • 明确条件:你作为先手,你们每一步都是最优解(对于自己来说是最优解,目的是让对方输掉游戏)
  • 1、石头数量在[1,3]之间,你可以直接取走所有的石头,你胜定。
  • 2、石头数量恰好为 4 颗,参考 example 中的第一个例子,不论你取走几颗(1~3颗),按对自身最优解的原则,对手肯定会取走剩下的所有石头,对手胜定;
    • 同理,反过来思考,如果轮到对手时,只剩4颗石头,那不论对手取走几颗,按对自身最优解的原则,你肯定会取走剩下所有的石头,你胜定。
  • 3、石头数量在[5,7]之间,你如果想取胜,参考上一条的思路,就要保证让对手面临4颗石头(如,5颗的时候你取走1颗,7颗的时候你取走3颗)你胜定
  • 4、石头数量恰好为 8 颗,参考上述分析1和分析2,不论你取走几颗(1~3颗),剩下的石头数量必然大于4,按对自身最优解的原则,对手只需要且肯定会让你下一次取的时候面对4颗石头,对手胜定。
  • 5、拓展到[9,+∞)范围中,参考上述分析 1 — 4
    • 只要轮到你取的时候,面临的是 4的倍数 颗石头,不论你取几颗,按对自身最优解的原则,对手只需要让你接下来每一次都继续面临 4 或 4的倍数颗石头,对手胜定。
    • 反之,只要你能让对方先面临 4的倍数 颗石头,你胜定。
  • 总结:在你先手的情况下,
    • 如果游戏开始的时候是 4 或 4的倍数 颗石头,不论你怎么取,输定。
    • 如果游戏开始的时候不是 4 或 4的倍数 颗石头,一定可以做到在你取了之后,马上让对手面对 4 或 4 的倍数颗石头,胜定。

代码(Java)

public class Solution {
    public boolean canWinNim(int n) {
        // 代码只需要判断先手面对的石头数,是不是4的倍数就好了。
        // 不是则返回 true,是则返回 false。
        return (n % 4) != 0;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值