笛卡尔树是一种特殊的二叉树,其结点包含两个关键字K1和K2。首先笛卡尔树是关于K1的二叉搜索树,即结点左子树的所有K1值都比该结点的K1值小,右子树则大。其次所有结点的K2关键字满足优先队列(不妨设为最小堆)的顺序要求,即该结点的K2值比其子树中所有结点的K2值小。给定一棵二叉树,请判断该树是否笛卡尔树。
输入格式:
输入首先给出正整数N(≤1000),为树中结点的个数。随后N行,每行给出一个结点的信息,包括:结点的K1值、K2值、左孩子结点编号、右孩子结点编号。设结点从0~(N-1)顺序编号。若某结点不存在孩子结点,则该位置给出−1。
输出格式:
输出YES
如果该树是一棵笛卡尔树;否则输出NO
。
输入样例1:
6
8 27 5 1
9 40 -1 -1
10 20 0 3
12 21 -1 4
15 22 -1 -1
5 35 -1 -1
输出样例1:
YES
输入样例2:
6
8 27 5 1
9 40 -1 -1
10 20 0 3
12 11 -1 4
15 22 -1 -1
50 35 -1 -1
输出样例2:
NO
思路分析:我第一次想法是直接进行BFS判断,因为BFS是按层遍历的嘛,,先判断当前结点是否满足BST结构,再判断当前结点是否满足最小堆。这种做法是错误的!!!正确的做法:判断是否满足BST应该根据中序遍历,看序列是否上升。判断最小堆可以根据BFS。
按照第一种方法,有一个case不过。为什么第一种做法是错误的呢?可以举个反例:
如上图,黑色是key1,红色是key2。结点定义为(key1, key2)按照第一种做法, 在判断左边(80,110)这个结点时,满足最小堆,也满足BST。但这棵树的中序序列是80、120、100、150。并不是升序的,所以是错误的。
为什么第一种做法是错的?因为在进行BSF层序遍历时,总是判断当前三个结点的情况是否满足BST结构,例如根结点出队时,判断的是根、根的左孩子、根的右孩子这三个结点。再进行到(80,120)这个结点时,判断的是(80,120)和左孩子NULL,和右孩子(120,130)这三个结点,显然这三个结点满足BST结构,但不一定满足整棵树的BST结构。所以这种策略是错误的,错误的原因是每次只能判断当前三个结点的BST结构。。
而用BFS遍历判断是否满足最小堆的策略是正确的,虽然每次出队也是判断当前的三个结点(根、根的左孩子、根的右孩子),但因为根据递推关系,根key2 < 根左key2 && 根key2 < 根右key2。在判断(80, 120)这个结点时,如果也有根key2 < 根左key2 && 根key2 < 根右key2这个关系,则(80, 120)这个结点的key2一定比上面所有层结点的key2值都大,所以用BFS判断最小堆这个策略是正确的。
AC代码:
#include <cstdio>
#include <queue>
#include <vector>
#define MAX 1000 + 10
using namespace std;
typedef struct {
int key1;
int key2;
int left;
int right;
} Node;
Node node[MAX];
int isRoot[MAX];
vector<int> vec;
bool bfs( int root ) {
queue<Node> q;
q.push( node[root] );
bool flag = true;
while( !q.empty() ) {
if( !flag ) break;
Node curNode = q.front();
q.pop();
int left = curNode.left;
int right = curNode.right;
/*
// 先判断是否满足BST
if( left != -1 && curNode.key1 <= node[left].key1 ) {
flag = false;
}
if( right != -1 && curNode.key1 >= node[right].key1 ) {
flag = false;
}
*/
// 再判断是否满足最小堆
if( left != -1 && curNode.key2 >= node[left].key2 ) {
flag = false;
}
if( right != -1 && curNode.key2 >= node[right].key2 ) {
flag = false;
}
if( left != -1 ) q.push( node[left] );
if( right != -1 ) q.push( node[right] );
}
/*
if( flag ) printf( "YES\n" );
else printf( "NO\n" );
*/
return flag;
}
void dfsIn( int root ) {
if( node[root].left != -1 ) dfsIn( node[root].left );
vec.push_back( node[root].key1 );
if( node[root].right != -1 ) dfsIn( node[root].right );
}
int main() {
int n;
scanf( "%d", &n );
for( int i = 0; i < n; i++ ) {
scanf( "%d%d%d%d", &node[i].key1, &node[i].key2,
&node[i].left, &node[i].right );
if( node[i].left != -1 ) {
isRoot[node[i].left] = 1;
}
if( node[i].right != -1 ) {
isRoot[node[i].right] = 1;
}
}
int root = -1;
for( int i = 0; i < n; i++ ) {
if( isRoot[i] == 0 ) {
root = i;
break;
}
}
// 判断空树
if( root == -1 ) {
printf( "YES\n" );
return 0;
}
bool flag = bfs( root );
dfsIn( root );
bool temp = true;
for( int i = 0; i < n - 1; i++ ) {
if( vec[i] > vec[i + 1] ) {
temp = false;
break;
}
}
if( flag && temp ) printf( "YES" );
else printf( "NO" );
return 0;
}