求n阶矩阵的逆

 

多情况下我们需要用到矩阵,并且需要使用它的逆,下面介绍一下一种求矩阵逆的方法及实现,该方法取自《运筹学(第三版)》,有兴趣大家可以参考一下,若有错误,也希望大家指正。

设矩阵

A=

a11a12a1m
a21a22a2m
am1am2amm

求其逆矩阵可以从第一列开始,

P1=

a11
a21
am1

以a11为主元变换为

1/a11
-a21/a11
-am1/a11

,然后构造含有该列但其他列均为单位列的矩阵

E1=

1/a1100
-a21/a1110
-am1/a1101

则有E1P1=

1
0
0

且E1A=

1a(1)12a(1)1m
0a(1)22a(1)2m
0a(1)m2a(1)mm

然后再以第二列的a(1)22 为主元变换为

-a(1)12/a(1)22
1/a(1)22
-a(1)m2/a(1)22

然后如同第一步一样构造E2,计算出E2E1A,此时第一二列成为单位列,如此一步步进行,直到Em…E2E1A为单位矩阵

可求得逆矩阵A-1为Em…E2E1  

 下面即是我自己实现的方法,使用了面向对象的方法:

 

 

学习运筹学时候实现的,在此贴出来,希望大家能与我交流(别扔砖头啊)^_^!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值