Tensorflow中Tensor类型解析

本文介绍了Tensorflow中Tensor对象的使用,包括placeholder、Variable、constant和SparseTensor四种方式初始化Tensor。placeholder用于创建占位符,Variable用于创建可训练的张量,constant用于创建常量张量,SparseTensor则用于处理稀疏数据。在TF程序中,数据以tf.Tensor类型存储,理解这些基本操作对于TF编程至关重要。
摘要由CSDN通过智能技术生成

Tensorflow官方API文档Python版本、Java版本、C++版本和Go版本,以下介绍Python版本

一般为了编程方便,在引入依赖时,使用tf代替tensorflow,如下,下文内容中用TF代替Tensorflow

import tensorflow as tf

在TF程序中,主要操作的对象是tf.Tensor,即在TF框架中,数据都以tf.Tensor类型进行组织和存储,熟悉面向对象编程的话应该很容易理解(下文“Tensor对象”和“Tensor变量”的含义相同),可以看到该类定义在

>>> tf.Tensor
<class 'tensorflow.python.framework.ops.Tensor'>
每个Tensor对象包括数据类型(data type)和形状(shape)两个基本属性,每个对象的数据类型是唯一的,由于python本身是一种弱类型的语言,因此创建Tensor变量时可以不指定数据类型,而是通过运行时判别。Tensor在数学上的名称是张量,张量会有阶数,零阶张量是标量,一阶张量是向量,二阶张量是矩阵,阶数可以更多,例如三阶张量、四阶张量等,如下表(源自https://www.tensorflow.org/programmers_guide/tensors)

Rank Math entity
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值