tensorflow
文章平均质量分 92
青松愉快
动漫什么的最好了
展开
-
一维卷积表示tf.nn.conv1d矩阵的运算过程,以,例子,说明,tfnnconv1d
这几天在看代码,然后看网上关于一维卷积介绍的文档很多,但是对于tf.nn.conv1d 矩阵运算过程几乎没有介绍,这里我就将刚弄懂的写出来,希望能帮到大家理解这个函数,也为了让自己以后能更好的查阅~~conv1d(value, filters, stride, padding, use_cudnn_on_gpu=None, data_format=None, name=None)value: A 3DTensor. Must be of typefloat16orfloat32.被...转载 2021-06-24 16:45:33 · 623 阅读 · 0 评论 -
Linking to both tensorflow and protobuf causes segmentation fault during static initializers
System information Have I written custom code (as opposed to using a stock example script provided in TensorFlow): Yes OS Platform and Distribution (e.g., Linux Ubuntu 16.04): 4.18.10-1rodete2-amd64 (Debian-derived) Mobile device (e.g. iPho...转载 2021-05-19 14:29:40 · 361 阅读 · 0 评论 -
使用TensorFlow C++ API构建线上预测服务
使用TensorFlow C++ API构建线上预测服务运行环境:TF-1.10除了本机的tensorflow之外,仍需要安装下面的tf。源码安装后,看到tensorflow/contrib/makefile/gen/lib/libtensorflow-core.a静态库和 tensorflow/contrib/makefile/gen/bin/benchmark可执行文件运行示例:>1.mkdir -p ~/graphs2.curl -o ~/graphs..转载 2021-04-26 10:39:28 · 427 阅读 · 0 评论 -
TensorFlow 篇 | TensorFlow 2.x 模型 Serving 服务
「导语」在模型训练完成后,我们需要使用保存后的模型进行线上预测,即模型 Serving 服务。 TensorFlow 团队提供了专门用于模型预测的服务系统 TensorFlow Serving,它专为生产环境设计,具备高性能且具有很强大的灵活性,本文将从服务搭建,服务配置,远程访问等多个方面对 TensorFlow Serving 进行详细地介绍。Serving 服务搭建官方推荐使用 Docker 来完成 TensorFlow Serving 服务的搭建,这是最容易也转载 2021-03-05 09:30:59 · 1526 阅读 · 1 评论 -
使用tensorflow-serving部署tensorflow模型
使用docker部署模型的好处在于,避免了与繁琐的环境配置打交道。使用docker,不需要手动安装Python,更不需要安装numpy、tensorflow各种包,直接一个docker就包含了全部。docker的方式是如今部署项目的第一选择。一、docker用法初探1、安装docker安装需要两个命令:sudo apt-get install dockersudo apt-get install docker.io好的学习资料不必远求docker --helpdocker run -转载 2021-02-25 14:38:54 · 513 阅读 · 0 评论 -
损失函数softmax_cross_entropy、binary_cross_entropy、sigmoid_cross_entropy之间的区别与联系
cross_entropy-----交叉熵是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。在介绍softmax_cross_entropy,binary_cross_entropy、sigmoid_cross_entropy之前,先来回顾一下信息量、熵、交叉熵等基本概念。---------------------信息论交叉熵是信息论中的一个概念,要想了解交叉熵的本质,需要先从最基本的概念讲起。一、信息量首先是信息量。假设我们听到了两件事,分别如下:事件A:巴西队进入转载 2020-06-07 14:25:45 · 1835 阅读 · 0 评论 -
GCN源代码注释的解释,源码,解读
GCN源代码注释的解释,源码,解读1. utils.pyimport numpy as npimport pickle as pklimport networkx as nximport scipy.sparse as spfrom scipy.sparse.linalg.eigen.arpack import eigshimport sysdef parse_index_file(filename): """Parse index file.""" index =转载 2020-06-03 19:16:32 · 3251 阅读 · 3 评论 -
tf.nn.embedding_lookup
embedding通俗易懂说就是将word映射为向量。 对自然语言处理中需要让机器理解word与word之间的关系,例如法国对应巴黎、中国对应北京,就需要用到embedding技术使词与词产生的向量之间存在某种联系(例如意思相近的词产生的向量在空间上更加接近等等)。这些都是后话。 这里只记录tensorflow中关于embedding给出的一个函数embedding_lookuptensorf...转载 2018-10-17 19:08:36 · 476 阅读 · 0 评论 -
对Tensorflow进行性能剖析
对Tensorflow进行性能剖析dataset优化:https://www.tensorflow.org/performance/datasets_performance本文翻译自Illarion Khlestov的博文:原文链接1如今TensorFlow是最常用的机器学习库之一。有的时候,对Tensorflow进行性能剖析是十分有用的,通过性能剖析可以了解什么操作更花费时间。这可以用...转载 2018-10-15 20:09:35 · 2580 阅读 · 0 评论 -
tensorFlow分布式内存消耗OOM
https://stackoverflow.com/questions/51175837/tensorflow-runs-out-of-memory-while-computing-how-to-find-memory-leaks/51183870#51183870https://github.com/tensorflow/tensorflow/issues/15518原创 2018-10-11 21:04:15 · 1837 阅读 · 0 评论 -
使用TensorFlow训练WDL模型性能问题定位与调优
简介TensorFlow是Google研发的第二代人工智能学习系统,能够处理多种深度学习算法模型,以功能强大和高可扩展性而著称。TensorFlow完全开源,所以很多公司都在使用,但是美团点评在使用分布式TensorFlow训练WDL模型时,发现训练速度很慢,难以满足业务需求。经过对TensorFlow框架和Hadoop的分析定位,发现在数据输入、集群网络和计算内存分配等层面出现性能瓶颈。主...转载 2018-10-10 15:15:45 · 381 阅读 · 0 评论 -
『TensorFlow』分布式训练_其三_多机分布式
转载自:https://www.cnblogs.com/hellcat/p/9194115.html一、基本概念Cluster、Job、task概念:三者可以简单的看成是层次关系,task可以看成每台机器上的一个进程,多个task组成job;job又有:ps、worker两种,分别用于参数服务、计算服务,组成cluster。同步更新各个用于并行计算的电脑,计算完各自的batch...转载 2018-10-09 18:30:00 · 510 阅读 · 0 评论 -
Tensorflow基础4-(epoch, iteration和batchsize)
batchsize:批大小。在深度学习中,一般采用SGD训练, 即每次训练在训练集中取batchsize个样本训练; iteration:1个iteration等于使用batchsize个样本训练一次; epoch:1个epoch等于使用训练集中的全部样本训练一次;举个例子,训练集有1000个样本,batchsize=10,那么:训练完整个样本集需要:100次iteration,1次ep...转载 2018-09-29 10:15:05 · 3169 阅读 · 0 评论 -
tensorflow保存和恢复模型的两种方法介绍
一、前言本文将会介绍tensorflow保存和恢复模型的两种方法,一种是传统的Saver类save保存和restore恢复方法,还有一种是比较新颖的SavedModelBuilder类的builder保存和loader文件里的load恢复方法。通过了解这两种方法,我们可以解决如何保存和恢复一个已经训练好的神经网络模型用于推理预测的现实需求,也可以辅助查看分析一个长时间训练的模型性能,最重要的是...转载 2018-09-28 20:16:34 · 18909 阅读 · 1 评论 -
TensorFlow全新的数据读取方式:Dataset API入门教程
Dataset API是TensorFlow 1.3版本中引入的一个新的模块,主要服务于数据读取,构建输入数据的pipeline。此前,在TensorFlow中读取数据一般有两种方法:使用placeholder读内存中的数据 使用queue读硬盘中的数据(关于这种方式,可以参考我之前的一篇文章:十图详解tensorflow数据读取机制)相Dataset API同时支持从内存和硬盘的读取...转载 2018-09-22 17:38:59 · 1485 阅读 · 0 评论 -
linux tensorflow 安装
https://anaconda.org/hcc/tensorflow-cpucompat原创 2019-03-23 11:53:17 · 155 阅读 · 0 评论