二分查找模板

二分的流程:

  1. 确定二分的边界;
  2. 编写二分的代码框架;
  3. 设计一个check(性质);
  4. 判断一下区间如何更新;
  5. 如果更新方式为l = mid, r = mid - 1,则在算mid时加上1。

题目

给定一个长度为 n+1 的数组nums,数组中所有的数均在 1∼n 的范围内,其中 n≥1。

请找出数组中任意一个重复的数,但不能修改输入的数组。

样例
给定 nums = [2, 3, 5, 4, 3, 2, 6, 7]。

返回 2 或 3。
思考题:如果只能使用 O(1) 的额外空间,该怎么做呢?

(分治,抽屉原理) O(nlogn)

抽屉原理:n+1 个苹果放在 n 个抽屉里,那么至少有一个抽屉中会放两个苹果

本题中一共有n+1个数,且数的取值为1~n,所以至少有两个重复的数字。
然后我们采用分治的思想,将每个数的取值的区间[1, n]划分成[1, n/2]和[n/2+1, n]两个子区间,然后分别统计两个区间中数的个数。
注意这里的区间是指 数的取值范围,而不是 数组下标

划分之后,左右两个区间里一定至少存在一个区间,区间中数的个数大于区间长度。

因此我们可以把问题划归到左右两个子区间中的一个,而且由于区间中数的个数大于区间长度,根据抽屉原理,在这个子区间中一定存在某个数出现了两次。

依次类推,每次我们可以把区间长度缩小一半,直到区间长度为1时,我们就找到了答案。

复杂度分析

  1. 时间复杂度:每次会将区间长度缩小一半,一共会缩小O(logn) 次。每次统计两个子区间中的数时需要遍历整个数组,时间复杂度是 O(n)。所以总时间复杂度是O(nlogn)。
  2. 空间复杂度:代码中没有用到额外的数组,所以额外的空间复杂度是 O(1)。

C++代码

class Solution {
public:
    int duplicateInArray(vector<int>& nums) {
        int l = 1, r = nums.size() -1;
        if (!n) return -1;
        while(l < r){
            int mid = (l + r) >> 1;
            int s = 0;
            for (auto x : nums){
                if (x >= l && x <= mid)
                    ++s;// s表示有多少个数在左半边的区间里。
            }
            if (s > mid - l + 1)
                r = mid;
            else 
                l = mid +1;
        }
        return l;
    }
};

二分查找模板

二分模板一共有两个,分别适用于不同情况。
算法思路:假设目标值在闭区间[l, r]中, 每次将区间长度缩小一半,当l = r时,我们就找到了目标值。

版本1
当我们将区间[l, r]划分成[l, mid]和[mid + 1, r]时,其更新操作是r = mid或者l = mid + 1;,计算mid时不需要加1。

C++ 代码模板:

int bsearch_1(int l, int r)
{
    while (l < r)
    {
        int mid = l + r >> 1;
        if (check(mid)) r = mid;
        else l = mid + 1;
    }
    return l;
}

版本2
当我们将区间[l, r]划分成[l, mid - 1]和[mid, r]时,其更新操作是r = mid - 1或者l = mid;,此时为了防止死循环,计算mid时需要加1。

C++ 代码模板:

int bsearch_2(int l, int r)
{
    while (l < r)
    {
        int mid = l + r + 1 >> 1;
        if (check(mid)) l = mid;
        else r = mid - 1;
    }
    return l;
}

一般写二分的思考顺序是这样的:
首先通过题目背景和check(mid)函数的逻辑,判断答案落在左半区间还是右半区间。
左右半区间的划分方式一共有两种:

中点mid属于左半区间,则左半区间是[l, mid],右半区间是[mid+1, r],更新方式是r = mid;或者l = mid + 1;,此时用第一个模板;
中点mid属于右半区间,则左半区间是[l, mid-1],右半区间是[mid, r],更新方式是r = mid - 1;或者 l = mid;,此时用第二个模板;

简单总结一下就是在[0,0,0,…,0] (共k个数) 里面搜索0。

使用第一个会返回位置0

使用第二个会返回k - 1

也可以看做寻找 第一个<= target的元素 和 最后一个<= target的元素

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

量子孤岛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值