统计哲学的频率学派和贝叶斯学派
flyfish
1. 伏尔泰的“彩票bug”故事:概率论还没成熟时,聪明人是怎么捡钱的?
想象一下,1728年的巴黎,贵族们流行买彩票。当时的彩票规则有个漏洞:奖金池的总金额有时候比所有彩票价格加起来还高。比如,政府发行了1000张彩票,每张卖1块钱,总收入1000块。但奖金池可能设了1200块。这意味着,理论上如果一个人把所有彩票全买了,能净赚200块。
但当时的人对概率论一知半解,没意识到这个漏洞。伏尔泰(没错,就是那个大哲学家)和他一个数学家朋友发现了这个bug。他们拉了一帮人集资,把所有彩票包圆了,果然稳赚不赔。后来巴黎政府发现不对劲,赶紧修改规则,但伏尔泰已经靠这波操作财富自由了,后半辈子专心写书骂人。
在概率论不严谨的时代,谁先摸清门道,谁就能“降维打击”。
概率论最初就是解决现实问题的工具,比如赌博、彩票、保险。数学一开始都是“搞钱”驱动的。
2. 为什么骰子赌博能催生出概率论?
17世纪的欧洲贵族爱赌骰子,但总有人输急眼了,开始问:“两个骰子扔出9点和10点,哪个概率更高?” 听起来像小学数学题,但在当时没人能说清楚。
举个例子:
- 两个骰子的点数组合共有36种可能(比如第一个骰子1点,第二个骰子1点;第一个1点,第二个2点……一直到6点)。
- 和为9的组合:3+6、4+5、5+4、6+3 → 共4种。
- 和为10的组合:4+6、5+5、6+4 → 共3种。
所以,9点比10点概率高(4/36 vs 3/36)。
但当时的人只会说“我觉得9点更容易”,而拉普拉斯(就是后来搞出“拉普拉斯妖”那位)在1812年写了本书,把这类问题系统化,用数学公式算概率,比如定义概率=有利情况数 / 所有可能情况数。这就是古典概率论的雏形。
概率论一开始就是“数数”的学问,靠穷举所有可能性。
但这种方法有bug:如果情况无限多怎么办?这就逼着数学家把概率论升级成更严谨的体系。
3. 拉普拉斯 vs 柯尔莫哥洛夫:怎么把“不靠谱”的概率变成“数学”?
拉普拉斯(1812年):
他相当于概率论的“整理师”。把前人的赌博问题、天文观测误差计算(比如预测行星轨道)等零散研究汇总,提出了古典概率的定义,还发明了工具(比如生成函数)。但这时候的概率论——能用,但没严格证明。
柯尔莫哥洛夫(1933年):
这位苏联数学家直接给概率论装了“钢筋骨架”。他用三条公理把概率论变成了数学的一个分支:
- 概率非负:任何事件的概率≥0。
- 全集的概率=1:比如掷骰子,“出现1-6点”的概率是1。
- 互斥事件概率可加:如果A和B不可能同时发生,那么P(A或B) = P(A)+P(B)。
就像盖楼先打地基,这三条公理让所有概率问题都能用数学推导,不再依赖“我觉得”。
从此,概率论和几何、代数一样,成了严格的数学体系。
4. 贝叶斯 vs 频率学派:吵了200年,到底在争什么?
频率学派:
- 信条:概率是客观的,是长期频率的极限。比如抛硬币正面向上的概率是0.5,因为抛一万次大约有5000次正面。
- 怎么用:做实验、收集数据、算频率。比如临床试验说“药效有95%置信度”,意思是如果重复实验100次,大约95次结果会落在这个区间内。
贝叶斯学派:
- 信条:概率是主观的,是你对某件事的相信程度。比如“明天有80%概率下雨”,是你的个人判断,可以随时用新数据更新。
- 怎么用:先假设一个“先验概率”(比如根据历史数据,某病发病率1%),然后拿到新数据(比如检测阳性),用贝叶斯公式更新成“后验概率”(真实患病的概率可能只有10%)。
举个例子:
- 频率学派会说:“如果所有人都抛硬币100次,大约一半人得到正面次数在40-60次之间。”
- 贝叶斯学派会说:“根据我抛了10次硬币的结果(比如7次正面),我认为正面的概率更可能是70%。”
为什么吵架:
1. 概率是“事实”还是“信念”?
- 频率学派:像科学家,只认客观事实。
- 例子:抛硬币100次,正面50次,频率学派会说“正面概率是50%”,因为这是实测结果。
- 概率是长期频率的极限,即某个事件在无限重复试验中出现的频率。
- 贝叶斯学派:像侦探,综合线索不断修正观点。
- 例子:抛硬币前,你觉得硬币可能有作弊(先验:正面概率60%)。抛10次出现7次正面,贝叶斯会说:“现在我认为正面概率更接近65%”(后验)。
- 概率是主观信念的量化,即基于现有知识对事件可能性的信任程度。
2. 参数是“固定值”还是“会变的”?
- 频率学派:认为参数是固定靶子,用数据当箭去射它。
- 比如估计全国平均身高,频率学派会说:“我们抽1000人算个平均数,这个数应该离真实值不远。”
- 将未知参数(如均值、方差)视为固定但未知的常数,通过数据估计其值。例如,用样本均值估计总体均值。
- 贝叶斯学派:认为参数是个谜团,需要不断用线索(数据)缩小范围。
- 比如同样估计平均身高,贝叶斯会说:“根据历史数据,我猜平均身高在1.6米到1.8米之间(先验),再根据新样本调整猜测。”
- 将参数视为随机变量,赋予其先验分布(prior),再通过数据更新为后验分布(posterior)。
3. 结论是“可重复”还是“个性化”? (推断方法)
- 频率学派:追求普适结论,强调“如果重复实验100次,结果会如何”。
- 例如:“这种药有效的置信度是95%” → 意思是“如果重复试验100次,大约95次结果会支持药效”。
- 依赖最大似然估计(MLE)和假设检验(如p值、置信区间)。
- 结论基于重复抽样理论,例如:“95%置信区间”的含义是,如果重复实验无限次,95%的区间会覆盖真实参数。
- 贝叶斯学派:提供个性化答案,强调“基于现有信息,我认为如何”。
- 例如:“根据当前数据,我有95%的把握认为药有效” → 这是对单一实验结果的概率判断。
- 基于贝叶斯定理,将先验信息与数据结合,计算参数的后验分布。
- 结论是概率陈述,例如:“参数有95%概率落在某区间”(可信区间)。
频率学派(Frequentist)和贝叶斯学派(Bayesian)
-
概率的定义
- 频率学派:认为例如,“硬币正面概率0.5”意味着抛无数次后正面占比趋于50%。
- 贝叶斯学派:认为概率是主观信念的量化,即基于现有知识对事件可能性的信任程度。例如,“明天下雨概率70%”反映个人对气象数据的综合判断。
-
参数的视角
- 频率学派:将未知参数(如均值、方差)视为固定但未知的常数,通过数据估计其值。例如,用样本均值估计总体均值。
- 贝叶斯学派:将参数视为随机变量,赋予其先验分布(prior),再通过数据更新为后验分布(posterior)。例如,假设某病发病率服从某个分布,再根据检测数据修正该分布。
-
推断方法
- 频率学派:
- 依赖最大似然估计(MLE)和假设检验(如p值、置信区间)。
- 结论基于重复抽样理论,例如:“95%置信区间”的含义是,如果重复实验无限次,95%的区间会覆盖真实参数。
- 贝叶斯学派:
- 基于贝叶斯定理,将先验信息与数据结合,计算参数的后验分布。
- 结论是概率陈述,例如:“参数有95%概率落在某区间”(可信区间)。
- 频率学派:
比较
维度 | 频率学派 | 贝叶斯学派 |
---|---|---|
数学基础 | 遵守柯尔莫哥洛夫公理 | 遵守柯尔莫哥洛夫公理 |
概率解释 | 客观频率 | 主观信念 |
推断方法 | 基于似然函数,拒绝或接受假设 | 基于先验和似然的乘积,计算后验分布 |
典型工具 | 置信区间、假设检验 | 可信区间、贝叶斯因子 |
概率思维帮你区分:
- 该努力的事(高概率能改变的结果,如学习);
- 该放手的事(低概率或不可控的随机性,如中彩票、他人态度)。