统计哲学的频率学派和贝叶斯学派

统计哲学的频率学派和贝叶斯学派

flyfish

1. 伏尔泰的“彩票bug”故事:概率论还没成熟时,聪明人是怎么捡钱的?

想象一下,1728年的巴黎,贵族们流行买彩票。当时的彩票规则有个漏洞:奖金池的总金额有时候比所有彩票价格加起来还高。比如,政府发行了1000张彩票,每张卖1块钱,总收入1000块。但奖金池可能设了1200块。这意味着,理论上如果一个人把所有彩票全买了,能净赚200块。
但当时的人对概率论一知半解,没意识到这个漏洞。伏尔泰(没错,就是那个大哲学家)和他一个数学家朋友发现了这个bug。他们拉了一帮人集资,把所有彩票包圆了,果然稳赚不赔。后来巴黎政府发现不对劲,赶紧修改规则,但伏尔泰已经靠这波操作财富自由了,后半辈子专心写书骂人。

在概率论不严谨的时代,谁先摸清门道,谁就能“降维打击”。
概率论最初就是解决现实问题的工具,比如赌博、彩票、保险。数学一开始都是“搞钱”驱动的。

2. 为什么骰子赌博能催生出概率论?

17世纪的欧洲贵族爱赌骰子,但总有人输急眼了,开始问:“两个骰子扔出9点和10点,哪个概率更高?” 听起来像小学数学题,但在当时没人能说清楚。

举个例子

  • 两个骰子的点数组合共有36种可能(比如第一个骰子1点,第二个骰子1点;第一个1点,第二个2点……一直到6点)。
  • 和为9的组合:3+6、4+5、5+4、6+3 → 共4种。
  • 和为10的组合:4+6、5+5、6+4 → 共3种。
    所以,9点比10点概率高(4/36 vs 3/36)。

但当时的人只会说“我觉得9点更容易”,而拉普拉斯(就是后来搞出“拉普拉斯妖”那位)在1812年写了本书,把这类问题系统化,用数学公式算概率,比如定义概率=有利情况数 / 所有可能情况数。这就是古典概率论的雏形。

概率论一开始就是“数数”的学问,靠穷举所有可能性。
但这种方法有bug:如果情况无限多怎么办?这就逼着数学家把概率论升级成更严谨的体系。

3. 拉普拉斯 vs 柯尔莫哥洛夫:怎么把“不靠谱”的概率变成“数学”?

拉普拉斯(1812年)

他相当于概率论的“整理师”。把前人的赌博问题、天文观测误差计算(比如预测行星轨道)等零散研究汇总,提出了古典概率的定义,还发明了工具(比如生成函数)。但这时候的概率论——能用,但没严格证明。

柯尔莫哥洛夫(1933年)

这位苏联数学家直接给概率论装了“钢筋骨架”。他用三条公理把概率论变成了数学的一个分支:

  1. 概率非负:任何事件的概率≥0。
  2. 全集的概率=1:比如掷骰子,“出现1-6点”的概率是1。
  3. 互斥事件概率可加:如果A和B不可能同时发生,那么P(A或B) = P(A)+P(B)。

就像盖楼先打地基,这三条公理让所有概率问题都能用数学推导,不再依赖“我觉得”。
从此,概率论和几何、代数一样,成了严格的数学体系。

4. 贝叶斯 vs 频率学派:吵了200年,到底在争什么?

频率学派
  • 信条:概率是客观的,是长期频率的极限。比如抛硬币正面向上的概率是0.5,因为抛一万次大约有5000次正面。
  • 怎么用:做实验、收集数据、算频率。比如临床试验说“药效有95%置信度”,意思是如果重复实验100次,大约95次结果会落在这个区间内。
贝叶斯学派
  • 信条:概率是主观的,是你对某件事的相信程度。比如“明天有80%概率下雨”,是你的个人判断,可以随时用新数据更新。
  • 怎么用:先假设一个“先验概率”(比如根据历史数据,某病发病率1%),然后拿到新数据(比如检测阳性),用贝叶斯公式更新成“后验概率”(真实患病的概率可能只有10%)。

举个例子

  • 频率学派会说:“如果所有人都抛硬币100次,大约一半人得到正面次数在40-60次之间。”
  • 贝叶斯学派会说:“根据我抛了10次硬币的结果(比如7次正面),我认为正面的概率更可能是70%。”

为什么吵架

1. 概率是“事实”还是“信念”?

  • 频率学派:像科学家,只认客观事实。
    • 例子:抛硬币100次,正面50次,频率学派会说“正面概率是50%”,因为这是实测结果。
    • 概率是长期频率的极限,即某个事件在无限重复试验中出现的频率。
  • 贝叶斯学派:像侦探,综合线索不断修正观点。
    • 例子:抛硬币前,你觉得硬币可能有作弊(先验:正面概率60%)。抛10次出现7次正面,贝叶斯会说:“现在我认为正面概率更接近65%”(后验)。
    • 概率是主观信念的量化,即基于现有知识对事件可能性的信任程度。

2. 参数是“固定值”还是“会变的”?

  • 频率学派:认为参数是固定靶子,用数据当箭去射它。
    • 比如估计全国平均身高,频率学派会说:“我们抽1000人算个平均数,这个数应该离真实值不远。”
    • 将未知参数(如均值、方差)视为固定但未知的常数,通过数据估计其值。例如,用样本均值估计总体均值。
  • 贝叶斯学派:认为参数是个谜团,需要不断用线索(数据)缩小范围。
    • 比如同样估计平均身高,贝叶斯会说:“根据历史数据,我猜平均身高在1.6米到1.8米之间(先验),再根据新样本调整猜测。”
    • 将参数视为随机变量,赋予其先验分布(prior),再通过数据更新为后验分布(posterior)。

3. 结论是“可重复”还是“个性化”? (推断方法)

  • 频率学派:追求普适结论,强调“如果重复实验100次,结果会如何”。
    • 例如:“这种药有效的置信度是95%” → 意思是“如果重复试验100次,大约95次结果会支持药效”。
    • 依赖最大似然估计(MLE)假设检验(如p值、置信区间)。
    • 结论基于重复抽样理论,例如:“95%置信区间”的含义是,如果重复实验无限次,95%的区间会覆盖真实参数。
  • 贝叶斯学派:提供个性化答案,强调“基于现有信息,我认为如何”。
    • 例如:“根据当前数据,我有95%的把握认为药有效” → 这是对单一实验结果的概率判断。
    • 基于贝叶斯定理,将先验信息与数据结合,计算参数的后验分布。
    • 结论是概率陈述,例如:“参数有95%概率落在某区间”(可信区间)。

频率学派(Frequentist)和贝叶斯学派(Bayesian)

  1. 概率的定义

    • 频率学派:认为例如,“硬币正面概率0.5”意味着抛无数次后正面占比趋于50%。
    • 贝叶斯学派:认为概率是主观信念的量化,即基于现有知识对事件可能性的信任程度。例如,“明天下雨概率70%”反映个人对气象数据的综合判断。
  2. 参数的视角

    • 频率学派:将未知参数(如均值、方差)视为固定但未知的常数,通过数据估计其值。例如,用样本均值估计总体均值。
    • 贝叶斯学派:将参数视为随机变量,赋予其先验分布(prior),再通过数据更新为后验分布(posterior)。例如,假设某病发病率服从某个分布,再根据检测数据修正该分布。
  3. 推断方法

    • 频率学派
      • 依赖最大似然估计(MLE)假设检验(如p值、置信区间)。
      • 结论基于重复抽样理论,例如:“95%置信区间”的含义是,如果重复实验无限次,95%的区间会覆盖真实参数。
    • 贝叶斯学派
      • 基于贝叶斯定理,将先验信息与数据结合,计算参数的后验分布。
      • 结论是概率陈述,例如:“参数有95%概率落在某区间”(可信区间)。

比较

维度频率学派贝叶斯学派
数学基础遵守柯尔莫哥洛夫公理遵守柯尔莫哥洛夫公理
概率解释客观频率主观信念
推断方法基于似然函数,拒绝或接受假设基于先验和似然的乘积,计算后验分布
典型工具置信区间、假设检验可信区间、贝叶斯因子

概率思维帮你区分:

  • 该努力的事(高概率能改变的结果,如学习);
  • 该放手的事(低概率或不可控的随机性,如中彩票、他人态度)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二分掌柜的

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值