一个曾经纯数学专业毕业的未来算法工程师内心独白

点击上方“AI算法与图像处理”,选择加"星标"或“置顶”

重磅干货,第一时间送达640?wx_fmt=jpeg

640?wx_fmt=png

作者:鳄鱼家的猪

https://www.nowcoder.com/discuss/226352

仅用于学习交流分享,如有侵权请联系删除

本科数学专业出身的我,曾经很沉迷于数学,奈何家庭只是个普通家庭,面临着没有钱的压力。我当时选择了统计学的研究生,那年也是统计学很火的一年,心想可以用数学的知识拿高工资好就业。

读研之后,因为其实这个方向还是属于数学,只是偏应用了,用到的数学知识也不及我本科学的三分之一,有什么办法呢你得向现实低头。让我暖和的是第一节课上的是泛函分析,估计这里面很少有人了解这门课,算是数学真正入门的课程。之后终于学了一门和我以前学的都不一样的课程,也是我现在的基础,数据挖掘十大算法。对你们没有看错在此之前我没有学过编程,以前也不需要,然后就直接学算法了,导师带我们推公式讲思路,介绍专业名词,那时我想这才是算法吗?其实当时觉得这些算法的公式真的简单,就加强了我学算法的信心,然后我和导师还有同门出了一本十大算法的书,写入了自己的一些思考。这时的我还在疯狂的学习新的算法,当然每个算法的公式我不不止推敲过一篇,因为看多了会忘记,那时我还在沉迷于理论。

研一过完的暑假,在延续师兄的课题之后,我创造了我人生中第一个融合算法(其实现在看来就是强化学习的思想),当时我看的算法仅限于机器学习,因为我并不想半桶水。那篇文章写成了英文的,实验用matlab做的。本来定位很高的,最后我说我不读博,文章也一拖再拖。之后为师姐写了一个推荐算法,基于异构物品相似度的,其实我不了解推荐算法,也没有想过钻那一方面,个人觉得没什么内容。之后将一个概念加到了gbdt中,发现效果也还可以,不过实验没有详细的做,只写出来理论和小部分测试。

对你没有看错到现在都没有项目,因为导师更加偏向理论。我这时开始接触深度学习了,现在证明这样其实没错。自己推导公式其实也就是bp,不过神经网络中有个地方其实很少人知道公式怎么来的,就是池化层的bp公式,需要翻转W的意义。我他么也是无聊,最后发现其实我们不需要写这些公式,框架搭好就OK,这些因为都是自学,没人指导。

接来了基本经常看深度学习了,然后也会看机器学习,巩固以前的东西,还是理论,你没有看错,因为没有项目。研一暑期参加了华为杯数学建模,我一个人坚持到最后拿了个三等奖,然后就没有经历了。

研二在找实习的过程中面了腾讯因为没有项目被拒,之后创造了我第二个算法,深度学习的优化算法,代替了gd,浅层做过实验效果提升了,深层当时代码还没写出来就被一个做地理信息的公司捞到了,我就进入了人生中第一家公司,做图像算法。进去一个武大的博士带我,可是似乎方向不是特别一样,还是我更加偏向ml和dl的理论。

带着带着我自己研究将公司一个子项目研究出来一点东西,在一次开会过程中,感谢产品经理的推荐,我花了几分钟讲了一下,这时我和博士就已经分开做了,这时主管说你再优化优化。我当时精力十足,经过不断的完善,和开会,创造了我人生第三个算法,关于道路图像分割的算法,也是我认认真真写的Python代码,这是我目前实验结果最完善的算法,毕竟是项目得认真,现在开发那边已经准备移植了。在这边主要做了分割算法,实习的尾巴我还看了两个星期的网络结构搜索算法以及源码。

这些的经历现在看来真的很挣扎,现在的算法似乎不是我心中的算法了,剑指那种算法似乎才是敲门砖,我一个非计算机科班的如何在其中生存,代码能力还得加强,项目经历还是少,公司的老员工知道我要走了去找其他工作,他说你这面试应该没问题吧,我说过第一关都不容易,苦笑了一下,我心中的梦一直没熄灭,你们可能是因为这个行业赚钱才进来,我有一半原因是因为人工智能需要数学,可现在梦想似乎越来越远。其实现在的公司对待算法很友善,愿意给你机会去创造,然后他们有人实现。

bat大厂已经不敢想,这两年似乎道路一开始就错了,也似乎一直是对的,我不希望成为机械化的人,就和我一直喜欢算法中参数自适应一样,没有退路了,只能算法。心中梦不会灭,小厂也是好肉。

最后奉劝和我一样数学毕业的,现在不要轻易尝试算法,找工作的时候你会难受死的。基础比不赢计算机出身的。

640?wx_fmt=png

推荐阅读:



640?wx_fmt=png
你点的每个“在看”,我都认真当成了喜欢

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值