python的DataFrame排序问题

一、定义数据框DataFrame

import  pandas
frame = pandas.DataFrame({"a":[9,2,5,1],"b":[4,7,-3,2],"c":[6,5,8,3]})

frame
Out[53]: 
   a  b  c
0  9  4  6
1  2  7  5
2  5 -3  8
3  1  2  3


二、按列对DataFrame排序

1.  按1列排序

(1)升序

frame.sort(columns = ['a'],axis = 0,ascending = True)

Out[62]: 
   a  b  c
3  1  2  3
1  2  7  5
2  5 -3  8
0  9  4  6

frame.sort_index(axis = 0,ascending = True,by = 'a')

Out[63]: 
   a  b  c
3  1  2  3
1  2  7  5
2  5 -3  8
0  9  4  6

frame.sort_values(by = 'a',axis = 0,ascending = True)
Out[65]: 
   a  b  c
3  1  2  3
1  2  7  5
2  5 -3  8
0  9  4  6

(2)降序

frame.sort(columns = ['a'],axis = 0,ascending = False)

Out[67]: 
   a  b  c
0  9  4  6
2  5 -3  8
1  2  7  5
3  1  2  3

frame.sort_index(axis = 0,ascending = False,by = 'a')

Out[68]: 
   a  b  c
0  9  4  6
2  5 -3  8
1  2  7  5
3  1  2  3

frame.sort_values(by = 'a',axis = 0,ascending = False)

Out[69]: 
   a  b  c
0  9  4  6
2  5 -3  8
1  2  7  5
3  1  2  3

2.  按多列排序
frame = pandas.DataFrame({"a":[9,2,5,1,0,7],"b":[4,7,-3,2,2,2],"c":[6,5,8,3,4,4]})

frame
Out[73]: 
   a  b  c
0  9  4  6
1  2  7  5
2  5 -3  8
3  1  2  3
4  0  2  4
5  7  2  4

(1)升序

frame.sort(columns = ['b','c','a'],axis = 0,ascending = True)

Out[74]: 
   a  b  c
2  5 -3  8
3  1  2  3
4  0  2  4
5  7  2  4
0  9  4  6
1  2  7  5

frame.sort_index(axis = 0,ascending = True,by = ['b','c','a'])

Out[75]: 
   a  b  c
2  5 -3  8
3  1  2  3
4  0  2  4
5  7  2  4
0  9  4  6
1  2  7  5

frame.sort_values(by = ['b','c','a'],axis = 0,ascending = True)
Out[76]: 
   a  b  c
2  5 -3  8
3  1  2  3
4  0  2  4
5  7  2  4
0  9  4  6
1  2  7  5

(2)降序

rame.sort(columns = ['b','c','a'],axis = 0,ascending = False)

Out[77]: 
   a  b  c
1  2  7  5
0  9  4  6
5  7  2  4
4  0  2  4
3  1  2  3
2  5 -3  8

frame.sort_index(axis = 0,ascending = False,by = ['b','c','a'])

Out[78]: 
   a  b  c
1  2  7  5
0  9  4  6
5  7  2  4
4  0  2  4
3  1  2  3
2  5 -3  8

frame.sort_values(by = ['b','c','a'],axis = 0,ascending = False)
Out[79]: 
   a  b  c
1  2  7  5
0  9  4  6
5  7  2  4
4  0  2  4
3  1  2  3
2  5 -3  8



三、按行对DataFrame排序

data = {"b":[4,7,-3,2,2,2],"a":[9,2,5,1,0,7],"c":[6,5,8,3,4,4]}

frame = pandas.DataFrame(data,columns = ['b','a','c'])

frame
Out[90]: 
   b  a  c
0  4  9  6
1  7  2  5
2 -3  5  8
3  2  1  3
4  2  0  4
5  2  7  4

1. 按行升序

frame.sort_index(axis = 1,ascending = True)
Out[91]: 
   a  b  c
0  9  4  6
1  2  7  5
2  5 -3  8
3  1  2  3
4  0  2  4
5  7  2  4

2. 按行降序

frame.sort_index(axis = 1,ascending = False)
Out[97]: 
   c  b  a
0  6  4  9
1  5  7  2
2  8 -3  5
3  3  2  1
4  4  2  0
5  4  2  7




相关链接:

http://blog.csdn.net/qq_22238533/article/details/72395564


http://bluewhale.cc/2016-08-06/use-pandas-filter-and-sort.html


http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_index.html#pandas.DataFrame.sort_index


http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_values.html#pandas.DataFrame.sort_values

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值