对于一个预测问题,同时有多种可用的模型,每种模型有多种可用的参数。如何选择一个最合适的模型?
总题过程分为2个部分:
1.对于一个模型,如何评估该模型在特定问题上的好坏?
2.选择了最好的模型后,如何选择最优的参数?
对于模型的评估,我们一般使用交叉验证(cross validation)来进行评估。 在这里我们使用了k折叠法,将训练集划分为相等的k份。然后从1~k中每次选择一份作为测试集,其余的k-1份作为训练集,训练好后利用某种评分规则对模型进行评分,最后以k个评分中最高的作为该模型的评分。
常见的评分规则有:R方值,F值,t值
R square
是决定系数,意思是你拟合的模型能解释因变量的变化的百分数,例如R方=0.810,表示你拟合的方程能解释因变量81%的变化,还有19%是不能够解释的.
F值
是方差检验量,是整个模型的整体检验,看你拟合的方程有没有意义
t值
是对每一个自变量(logistic回归)的逐个检验,看它的beta值β即回归系数有没有意义
F和t的显著性都是0.05
当我们对每一个模型都进行了交叉验证后,就能够选出一个对于当前问题最优的模型。接下来就需要解决第二个问题:对模型调参。在这里我们使用
网格搜索(grid search)
来对模型选择一套合适的参数。以支持向量机为例,其参数有gamma和C,那么其构成的二元组(1,1),(0.1,1),(1,10)..就可以看做是若干个“网格”。那么网格搜索就是,对于支持向量机这个模型,对于每个网格都进行一次交叉验证评估,最后得到评分最高的一组网格,那么最后我们就建立起了最优的模型
下面附上使用sklearn实现交叉验证和网格搜索的代码(kaggle中的牛人笔记):
-
-
- def lets_try(train,labels):
- results={}
- def test_model(clf):
-
- cv = KFold(n_splits=5,shuffle=True,random_state=45)
- r2 = make_scorer(r2_score)
- r2_val_score = cross_val_score(clf, train, labels, cv=cv,scoring=r2)
- scores=[r2_val_score.mean()]
- return scores
-
- clf = linear_model.LinearRegression()
- results["Linear"]=test_model(clf)
-
- clf = linear_model.Ridge()
- results["Ridge"]=test_model(clf)
-
- clf = linear_model.BayesianRidge()
- results["Bayesian Ridge"]=test_model(clf)
-
- clf = linear_model.HuberRegressor()
- results["Hubber"]=test_model(clf)
-
- clf = linear_model.Lasso(alpha=1e-4)
- results["Lasso"]=test_model(clf)
-
- clf = BaggingRegressor()
- results["Bagging"]=test_model(clf)
-
- clf = RandomForestRegressor()
- results["RandomForest"]=test_model(clf)
-
- clf = AdaBoostRegressor()
- results["AdaBoost"]=test_model(clf)
-
- clf = svm.SVR()
- results["SVM RBF"]=test_model(clf)
-
- clf = svm.SVR(kernel="linear")
- results["SVM Linear"]=test_model(clf)
-
- results = pd.DataFrame.from_dict(results,orient='index')
- results.columns=["R Square Score"]
- results=results.sort(columns=["R Square Score"],ascending=False)
- results.plot(kind="bar",title="Model Scores")
- axes = plt.gca()
- axes.set_ylim([0.5,1])
- return results
得到各个模型的R方评分:
从这里,我们就确定了选用Hubber模型进行网格搜索:
- cv = KFold(n_splits=5,shuffle=True,random_state=45)
-
- parameters = {'alpha': [1000,100,10],
- 'epsilon' : [1.2,1.25,1.50],
- 'tol' : [1e-10]}
-
- clf = linear_model.HuberRegressor()
- r2 = make_scorer(r2_score)
- grid_obj = GridSearchCV(clf, parameters, cv=cv,scoring=r2)
- grid_fit = grid_obj.fit(train, labels)
- best_clf = grid_fit.best_estimator_
-
- best_clf.fit(train,labels)
最后我们就得到了一个最优的模型!
转载自:https://i-blog.csdnimg.cn/blog_migrate/746c5bb3972be78db216b0d80213352b.png
相关链接:
https://stackoverflow.com/questions/19335165/cross-validation-and-grid-search