线性回归与 logistic回归

线性回归

算法方程: h θ ( x ) = ∑ i = 0 n θ i x i = θ T x h_{\theta}(x)=\sum_{i=0}^{n} \theta_{i} x_{i}=\theta^{T} x hθ(x)=i=0nθixi=θTx

损失函数: J ( θ 0 , θ 1 , … , θ n ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J\left(\theta_{0}, \theta_{1}, \ldots, \theta_{n}\right)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2} J(θ0,θ1,,θn)=2m1i=1m(hθ(x(i))y(i))2
将损失函数看做是关于 θ \theta θ的函数。

最小化损失函数:凸函数可以找到全局最优解,算法梯度下降。
θ 0 : = θ 0 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 0 ( i ) θ 1 : = θ 1 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 1 ( i ) θ 2 : = θ 2 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 2 ( i ) … \begin{array}{l}{\theta_{0}:=\theta_{0}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{0}^{(i)}} \\ {\theta_{1}:=\theta_{1}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{1}^{(i)}} \\ {\theta_{2}:=\theta_{2}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{2}^{(i)}} \\ {\ldots}\end{array} θ0:=θ0αm1i=1m(hθ(x(i))y(i))x0(i)θ1:=θ1αm1i=1m(hθ(x(i))y(i))x1(i)θ2:=θ2αm1i=1m(hθ(x(i))y(i))x2(i)

学习率: θ 1 : = θ 1 − α d d θ 1 J ( θ 1 ) \theta_{1}:=\theta_{1}-\alpha \frac{d}{d \theta_{1}} J\left(\theta_{1}\right) θ1:=θ1αdθ1dJ(θ1)
与收敛速度相关

过拟合与欠拟合:我们的假设函数曲线对原始数据拟合得非常好,但丧失了一般推到性,以致于预测效果很差。
解决方法:正则化
作用:控制参数幅度;限制参数搜索空间
J ( θ ) = 1 2 m [ ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 + λ ∑ j = 1 n θ j 2 ] J(\theta)=\frac{1}{2 m}\left[\sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}+\lambda \sum_{j=1}^{n} \theta_{j}^{2}\right] J(θ)=2m1[i=1m(hθ(x(i))y(i))2+λj=1nθj2]
假设原始线程方式是 h θ ( x ) = θ 1 x 1 + θ 2 x 2 + θ 3 x 3 + θ 4 x 4 h_{\theta}(x)=\theta_1x_1+\theta_2x_2+\theta_3x_3+\theta_4x_4 hθ(x)=θ1x1+θ2x2+θ3x3+θ4x4,在线训练过程中,根据训练集数据大小,每一个 θ \theta θ的都可能非常大,或者非常小,这条线抖动非常大。如果在损失函数中加入 ∑ j = 1 n θ j 2 \sum_{j=1}^{n} \theta_{j}^{2} j=1nθj2,因为损失函数要求最小值,所以每一个 θ \theta θ的值就不可能很大。
λ \lambda λ是一个超参数。 λ \lambda λ太小,正则化项不起作用; λ \lambda λ太大,学习到的参数主要由正则化项决定,与训练数据无关,也是错误的。
通常使用L1、L2正则化。

logistic回归

线性回归在分类问题上使用,健壮性差,所以使用logistic回归。
sigmoid函数值域在(0,1)之间,可以看做一个概率函数。
在线性回归外面套一层sigmoid函数。

算法方程: h θ ( x ) = g ( θ 0 + θ 1 x 1 + θ 2 x 2 ) h_{\theta}(x)=g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}\right) hθ(x)=g(θ0+θ1x1+θ2x2)
h θ ( x ) = g ( θ 0 + θ 1 x 1 + θ 2 x 2 + θ 3 x 1 2 + θ 4 x 2 2 ) h_{\theta}(x)=g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{3} x_{1}^{2}+\theta_{4} x_{2}^{2}\right) hθ(x)=g(θ0+θ1x1+θ2x2+θ3x12+θ4x22)

损失函数: cost ⁡ ( h θ ( x ) , y ) = { − log ⁡ ( h θ ( x ) )  if  y = 1 − log ⁡ ( 1 − h θ ( x ) )  if  y = 0 \operatorname{cost}\left(h_{\theta}(x), y\right)=\left\{\begin{aligned}-\log \left(h_{\theta}(x)\right) & \text { if } y=1 \\-\log \left(1-h_{\theta}(x)\right) & \text { if } y=0 \end{aligned}\right. cost(hθ(x),y)={log(hθ(x))log(1hθ(x)) if y=1 if y=0

J ( θ ) = − 1 m [ ∑ i = 1 m y ( i ) log ⁡ h θ ( x ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J(\theta)=-\frac{1}{m}\left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}\left(x^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right] J(θ)=m1[i=1my(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))]

梯度下降优化公式: θ j : = θ j − α ∂ ∂ θ j J ( θ ) \theta_{j}:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\theta) θj:=θjαθjJ(θ)

加入正则化: J ( θ ) = [ − 1 m ∑ i = 1 m y ( i ) log ⁡ ( h θ ( x ( i ) ) + ( 1 − y ( i ) ) log ⁡ 1 − h θ ( x ( i ) ) ] + λ 2 m ∑ j = 1 n θ j 2 J(\theta)=\left[-\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}\left(x^{(i)}\right)+\left(1-y^{(i)}\right) \log 1-h_{\theta}\left(x^{(i)}\right)\right]+\frac{\lambda}{2 m} \sum_{j=1}^{n} \theta_{j}^{2}\right. J(θ)=[m1i=1my(i)log(hθ(x(i))+(1y(i))log1hθ(x(i))]+2mλj=1nθj2

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值