第六章 参数估计

 依据样本推出总体分布的参数,方法有两种:矩估计和极大似然估计。
 参数估计的形式有:点估计和区间估计。
 点估计:构造合适的统计量 θˆ=θˆ(X1,X2,...Xn) 用来估计未知参数 θ θˆ 称为参数 θ 的点估计量。
 当给定样本观察值 x1,x2,...xn 时, θˆ(x1,x2,...xn) 称为参数 θ 的点估计值。

矩估计

 矩估计:用样本矩估计总体矩,用样本矩的函数估计总体矩的函数。
 理论依据:辛钦大数定理、依概率收敛的性质
 矩的概念参见这里

矩估计步骤

 设总体的k个未知参数为 θ1...θk X1,...Xn 样本来自总体X,假设总体的前k阶矩存在。
 1 建立总体分布的参数与总体矩之间的关系: μi=E(Xi)=hi(θ1...θk),i=1,2...k
 2 求各参数关于k阶矩的反函数: θi=gi(μ1...μk) ,i=1,2…k
 3 以样本各阶矩 A1,A2..Ak 代替总体X的各阶矩 μ1...μk ,得到各参数的矩估计: θˆ=gi(A1,A2...Ak)i=1,2...k
 在实际应用中,使用中心距也可以。
 矩估计不涉及总体分布。

极大似然估计

从这里开始

  极大似然是这样开始的。如果瓶子里有黑球和白球,已知有一种球概率是 34 ,但不知道具体是哪种球。采用放回抽样做了一次试验,取了5个球。这5个球的观察结果分别为黑、白、黑、黑、黑。估计一下黑球的概率。
  设 X={1,0, ,则X~B(1,p)。p为黑球的概率。p的可能取值是 p=14 p=34 。抽取容量为5的样本 X1,X2,...X5 ,观察值为1,0,1,1,1。
  当 p=14 ,出现本次观察结果的概率是 (14)434=31024
  当 p=34 ,出现本次观察结果的概率是 (34)414=811024
  811024>31024 ,所以 p=34 更有可能。于是 p^=34
  说明两点。
  1 这个容量为n的样本,是服从B(n,p),p是未知参数。依据这个样本出现概率最大的时候,p的取值,作为p的估计值,叫做 p^
  2 因为样本是独立抽样,所以样本出现最大概率表示为 ni=nP(Xi) ,每个事件发生概率的乘积,称为似然函数。
  依据这两点,推广为一般的定义。

极大似然定义

 设离散型总体X~ p(x;θ) , θ 一个定义域。 X1,X2,...Xn 为样本,观察值为 x1,x2,...xn ,则事件{ X1=x1,X2=x2...Xn=xn }发生的概率为似然函数 L(θ)=ni=1p(xi;θ)
 极大似然原理 L(θ^(x1,x2...xn))=maxθrangeL(θ) 。当似然函数取得最大值时候的参数 θ ,就是未知参数 θ 的估计值。
  θ^(x1,x2...xn) 称为 θ 极大似然估计值。相应的统计量 θ^(X1,X2..Xn) 称为 θ 极大似然估计量(MLE)。
 
 设连续型总体X概率密度函数为 f(x;θ) , θ 一个定义域。 X1,X2,...Xn 为样本,观察值为 x1,x2,...xn ,则样本在观察值领域发生的概率为似然函数 L(θ)=ni=1f(xi;θ)
 极大似然原理 L(θ^(x1,x2...xn))=maxθrangeL(θ) 。当似然函数取得最大值时候的参数 θ ,就是未知参数 θ 的估计值。
 
 说明:
 1 未知参数可能不是一个,设为 θ=(θ1,θ2...θn)
 2 求 L(θ) 的最大值时,可转换为求 lnL(θ) 的最大值, lnL(θ) 称为对数似然函数。利用偏微分解得 θ^i ,i=1,2…k。
 3 若 L(θ) 是关于某个 θi 的单调递增(减)函数,则 θi 的极大似然估计为 θi 的最大(小)值(与样本有关)。
 4 若 θ^ θ 的极大似然估计,则 g(θ) 的极大似然估计为 g(θ^)

极大似然估计步骤

 1 找到分布律或者概率密度函数。
 2 写出极大似然函数 L(θ)
 3 观察 L(θ) 是关于未知变量的单调函数吗?如果是,则根据单调性找到 L(θ) 取最大值时候的参数值。如果不是,判断函数对未知变量是否容易求导,选择是直接对原函数求导还是先求对数再求导。导函数为0的点就是参数的估计值。
 
 

比较

比较项矩估计极大似然估计
原理辛钦大数定理;依概率收敛的性质样本出现概率最大
计算方法联立方程组;有几个变量需要几个方程微分/偏微分
特点与分布无关,计算矩或者中心矩根据分布函数或者概率密度函数建立似然函数
条件需要k阶矩存在需要似然函数的导函数存在或者具有单调性

估计量的评价准则

无偏性准则

 若参数 θ 的估计量 θ^(X1,X2...Xn) ,满足 E(θ^)=θ ,则称 θ^ θ 的无偏估计量。
 若 E(θ^)θ ,则 |E(θ^)θ| 称为估计量 θ^ 的偏差。
 若 limn>+E(θ^)=θ ,则称 θ^ θ 的渐进无偏估计量。
 无偏估计量的统计意义是指在大量重复试验下,由 θ^(X1,X2...Xn) 给出的估计平均恰是 θ 。从而保证了 θ^ 没有系统误差。

纠偏方法

 如果 E(θ^)=aθ+b ,其中a,b是常数,且 ane0 ,则 1a(θ^b) θ 的无偏估计。
  B2=n1nS2

有效性准则

定义

 设 θ^1θ^2 θ 的两个无偏估计,如果 D(θ^1)D(θ^2) ,对一切定义域的 θ 都成立,且不等号至少对定义域内的某一个 θ 成立,则称 θ^1 θ^2 有效。
 方差较小的估计量是一个更有效的估计量。

均方误差准则

 设 θ^ θ 点估计,且方差存在,则称 E(θ^θ)2 θ^ 的均方误差,记为Mse( θ^ )。
 若 θ^ θ 的无偏估计,则有 Mse(θ^)=D(θ^)
 设 θ^1θ^2 θ 的点估计,如果 Mse(θ^1)<Mse(θ^2) ,对定义域内的 θ 都成立,则称在均方误差准则下, θ^1 要优于 θ^2

相合性准则

 设 θ^(X1,X2...Xn) 为参数 θ 的估计量,若对于任意定义域内的 θ ,当 n>+ θ^n 依概率收敛于 θ ,则称 θ^n θ 的相合估计量或一致估计量。
 也就是说:对 ε>0 ,有 limn>+P{|θ^θ|ε}=0 成立。

总结

 四个准则分别从期望、方差、差平方的期望、极限四个角度做了评价。简单概括是:无偏性: E(θ^)=θ ;有效性: D(θ^) 尽可能小;均方误差准则: E(θ^θ)2 尽可能小;相合性准则:  limn>+P{|θ^θ|ε}=0

练习

 1 对于任何分布, E(X¯¯¯)=E(X) :样本均值的数学期望等于总体的数学期望; E(S2)=D(X) :样本方差的数学期望等于总体的方差。
 2 E[(Xc)2]=D(X)+(E(X)c)2
 3 D(X)=E(X2)[E(X)]2

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值