算法八——动态规划

1 0-1背包问题

背包能够承受的总重量一定w,每个物品的总量不同int[] weight表示。怎么放才能让背包中物品的总重量最大。

每次决定一种物品,每一层能够达到的状态 state[][]

第0个物品的重量是2,要么装入背包,要么不装入背包,决策之后会对应背包中的两种状态,背包中的总总量是0或者2.我们用state[0][0]=true,state[0][2]=true来表示这两种状态。

第1个物品的重量是2,要么装入背包,要么不装入背包,决策之后对应的背包状态:
0+0=0
0+2=2
2+2=4
这是基于上一步背包的状态计算得到的
我们用state[1][0]=true state[1][2]=true state[1][4]=true 来表示。

以此类推,一直到第n-1个物品。找到state[n-1] 的 数组中找到最大的state[n-1][j]=true,返回j。

2 判断一个问题是否可以用动态规划

1 是否符合一个模型?
从(0,0)走到(n-1,n-1),总共要走2*(n-1)步,也就对应着2*(n-1)个阶段。每个阶段都有向下走或者向右走两种策略,并且每个阶段都会对应一个状态集合。
我们把状态定义为min_dist(i,j),其中i表示行,j表示列,min_dist表达式的值表示从(0,0)到(i,j)的最短路径长度。
所以这个问题是一个多阶段决策最优解问题,符合动态规划的模型。

2 重复子问题?
这个问题可以用回溯法解决。从(0,0)到当前位置,有多种路线,也就说明问题存在重复子问题。

3 无后效性?
我们仅仅允许往下和往右移动,不允许后退,所以前面阶段的状态确定之后,不会被后面阶段的决策所改变,所以这个问题符合无后效性。

4 最优子结构
根据题目要求的走法,要想到达(i,j),必须通过(i-1,j)或者(i-,j-1)这两个节点到达。也就是说min_dist(i,j) 可以通过min_dist(i, j-1) 和 min_dist(i-1,j)推导出来。
这说明,这个问题符合最优子结构。

3 动态规划解决方法

3.1 状态转移表法

3.2 状态转移方程法

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值