第三章 随机变量的数字特征

数学期望

 数学期望用来反映平均情况。

定义

 设离散型随机变量X的分布律为 P(X=xk)=pk,k=1,2,3... ,若级数 +k=1xkpk 是收敛的,则称级数 +k=1xkpk 的值为随机变量X的数学期望。记为E(X)。

E(X)=k=1+xkpk

  pk 可以理解为加权平均中的权值。数学期望又称为 均值
 设连续型随机变量X的概率密度函数为f(x),如果积分 +xf(x)dx 绝对收敛,则称 +xf(x)dx 为随机变量X的数学期望。
E(X)=+xf(x)dx

常见随机变量分布的数学期望

 如果X~B(p),E(X)=p
 如果X~B(n,p),E(X)=np
 如果X~P( λ ),E(X)= λ
 如果X~Geom(p),E(X)= 1p
 
 如果X~U(a,b),E(X)= (a+b)2
 如果X~E( λ ),E(X)= 1λ
 如果X~N( μ , σ2 ),E(X)= μ
 

随机变量函数的数学期望

 懒人定理:设Y是随机变量X的函数: Y=g(x)
 X是离散型随机变量,X的分布律为 P(X=xk)=pk,k=1,2,3... ,若 +k=1g(xk)pk 收敛,则 E(Y)=E(g(X))=+k=1g(xk)pk
 X是连续型随机变量,X的概率密度函数是f(x),若 +g(x)f(x)dx 绝对收敛,则 E(Y)=E(g(X))=+g(x)f(x)dx
 因为有了定理,就不需要先求出g(X)的分布律或者概率密度函数,再计算期望,所以称为懒人定理。
 二元随机变量函数的期望定理:设Z是随机变量X,Y的函数:Z=h(X,Y),
 若二元离散型随机变量(X,Y)的分布律为: P(xi,yj)=pij,i,j=1,2,3... ,则有 E(Z)=E(h(X,Y))=+i=1+j=1h(xi,yj)pij
 若二元连续型随机变量(X,Y)的概率密度函数为:f(x,y),则有 E(Z)=E(h(X,Y))=++h(x,y)f(x,y)dxdy
 特别地,

E(X)=++xf(x,y)dxdy

 
E(Y)=++yf(x,y)dxdy

 

数学期望的性质

  1. c是常数,E(c)=c。
  2. X是一个随机变量,c是常数,则E(cX)=cE(X)。
  3. 设X,Y是两个随机变量,则有E(X+Y)=E(X)+E(Y)。可以拓展到任意有限个随机变量的线性组合:
    E(c0+i=1nciXi)=c0+i=1nciE(Xi)
  4. 设X,Y是相互独立的随机变量,则E(XY)=E(X)E(Y)。可以拓展到任意有限个随机变量乘积的情况:
    E(i=1nXi)=i=1nE(Xi)
    ,其中 Xi,i=1,2,3... 相互独立。

方差

 方差是用来反映波动性的。

定义

 X是一个随机变量,如果 E{(XE(X))2} 是存在的,则称 E{(XE(X))2} 是X的方差。记为D(X)或者Var(X)。 D(X) 记为 σ(x) ,称为X的标准差或者均方差
 D(X)和 σ(x) 刻画了X取值的波动性,是衡量X取值分散程度的数字特征。如果D(X)较小,则X取值比较集中。

计算公式

  D(X)=E(X2)E(X)2

常见随机变量分布的方差

 如果X~B(p),D(X)=p(1-p)
 如果X~B(n,p),D(X)=np(1-p)
 如果X~P( λ ),D(X)= λ
 如果X~Geom(p),D(X)= 1pp2
 
 如果X~U(a,b),D(X)= (ba)212
 如果X~E( λ ),D(X)= 1λ2
 如果X~N( μ , σ2 ),E(X)= σ2  

方差的性质

1 设c是常数,则D(c)=0。
2 设X是随机变量,c是常数,则 D(cX)=c2D(X)
3 设X,Y是两个随机变量, D(X+Y)=D(X)+D(Y)+2tail ,tail=E{(X-E(X))(Y-E(Y))}。特别地,如果X,Y相互独立,则有 D(X+Y)=D(X)+D(Y) 。推广到任意有限个独立随机变量线性组合:

D(c0+i=1nciXi)=i=1nc2iD(Xi)
,其中 Xi,i=1,2,3...n 相互独立。
4 D(X)=0的充要条件是P(X=c)=1,且c=E(X)。

n个正态分布

 n个独立的正态随机变量的线性组合仍然服从正态分布。若 Xi ~ N(μi,σ2i),i=1,2,...n 且相互独立,则它们的线性组合 c0+c1X1+c2X2+...+cnXn ~ N(co+c1μ1+c2μ2+...+cnμn,c21σ21+c22σ22+...+c2nσ2n) ,其中 c1,c2...cn 是不全为0 的常数。

标准化变量

 设随机变量X具有数学期望 E(X)=μ ,方差 D(X)=σ2 ,记 X=Xμσ 。称 X 是X的标准化变量。
 

协方差与相关系数

来源

 方差定义中,当X,Y不独立时候的tail就是协方差。用来描述两个变量的相关程度。

定义

 数值E{[X-E(X)][Y-E(Y)]}为随机变量X,Y的协方差,记为Cov(X,Y),即

Cov(X,Y)=E[XE(X)][YE(Y)]

 
D(X+Y)=D(X)+D(Y)+2Cov(X,Y)

 Cov(X,Y)反映了X,Y的相关性。
  当Cov(X,Y)>0,X,Y是正相关。
  当Cov(X,Y)<0,X,Y是负相关。
  当Cov(X,Y)=0,X,Y不相关。
 

计算公式

  Cov(X,Y)=E(XY)E(X)E(Y)

协方差的性质

1 Cov(X,Y)=Cov(Y,X)
2 Cov(X,X)=D(X)
3 Cov(aX,bY)=abCov(X,Y)
4 Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)

相关系数

来源

 协方差是有量纲的数字特征,为了消除量纲的影响,引入相关系数。

定义

 数值 ρXY=Cov(X,Y)D(X)D(Y) 称为随机变量X与Y的相关系数。若记标准化变量 X=XE(X)D(X) Y=YE(Y)D(Y) ,则 ρXY=XY
 相关系数是衡量X,Y两个随机变量的线性相关关系的。 |ρXY| 绝对值越大,则X,Y的线性相关性越好。当 |ρXY|=1 ,表明X,Y以概率1存在线性关系;当 |ρXY|=0 ,表明X,Y之间没有线性关系,称为不相关

相关系数的性质

1 |ρXY|1
2 |ρXY|=1 存在常数a,b使得 P(Y=aX+bY)=1 。特别地, ρXY=1 b>0 ρXY=1 b<0

不相关与独立

 不相关是指没有线性关系。独立是指没有任何关系。两个随机变量除了线性关系还可能存在平方关系、平方根关系等其他关系。
 独立=>不相关。反之,则不可以。
 判断两个随机变量是否独立的依据是: f(X,Y)=fX(x)fY(y)
 判断两个随机变量是否线性相关的依据是:Cov(X,Y)=0 或者E(XY)=E(X)E(Y)。
 如果(X,Y)服从二元正态分布 N(μ1,μ2,σ21,σ22,ρ) ,则 ρXY=ρ 。X,Y相互独立的充要条件是 ρ=0 。所以对于二元正态变量,相互独立等价于不相关。
 

多元正态分布的性质

 设X为一个随机变量,如果 E(Xk)k=1,2... 存在,则称之为X的k阶(原点)矩
 设X为一个随机变量,如果 E[(XE(X))k)]k=1,2... 存在,则称之为X的k阶中心矩
 期望E(X)就是X的1阶原点矩。D(X)是X的2阶中心矩。
 设X,Y是两个随机变量,如果 E{XkYl}k,l=1,2... 存在,则称之为X与Y的k+l阶混合原点矩
 设X,Y是两个随机变量,如果 E[(XE(X))k(YE(Y))l]k,l=1,2... 存在,则称之为X与Y的k+l阶混合中心矩
 协方差Cov(X,Y)就是1+1阶混合中心矩。

n元随机变量的期望向量和协方差矩阵

 设n元随机变量 X=(X1,X2,...Xn)T,n1 ,若其每一分量的数学期望都存在,则称 E(X)=(E(X1),E(X2),...E(Xn))T,n1 为n元随机变量X的数学期望(向量)。
 

n元正态随机变量

这里写图片描述

四条性质

1 任意子向量 (Xi1,Xi2,...Xik)T 服从k元正态分布。
2 任意线性组合 l0+l1X1+L2X2...+lnXnl1,l2...0 ,服从一元正态分布。
 如果 X=(X1,X2,X3)T 为三元正态随机变量,则 Z1=3X1X2 ,或者 Z2=2X1+4X2+5 Z1,Z2 都是一元正态 变量。只是在计算 Z1,Z2 的参数时候与相互独立的三元正态随机变量不同。会利用相关系统计算协方差的值。
 
3 若 Y1,Y2,...Yk 均为 Xi 的线性函数, 则 (Y1,Y2,...Yk)T 也服从k元正态分布。这是正态变量线性变换不变性。
4 若 X=(X1,X2,...Xn)T,n1 ,服从n元正态分布,则 X1,X2...Xn 相互独立。X的协方差矩阵为对角矩阵。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值