1062 最简分数

一个分数一般写成两个整数相除的形式:N/M,其中 M 不为0。最简分数是指分子和分母没有公约数的分数表示形式。

现给定两个不相等的正分数 N​1​​/M​1​​ 和 N​2​​/M​2​​,要求你按从小到大的顺序列出它们之间分母为 K 的最简分数。

输入格式:

输入在一行中按 N/M 的格式给出两个正分数,随后是一个正整数分母 K,其间以空格分隔。题目保证给出的所有整数都不超过 1000。

输出格式:

在一行中按 N/M 的格式列出两个给定分数之间分母为 K 的所有最简分数,按从小到大的顺序,其间以 1 个空格分隔。行首尾不得有多余空格。题目保证至少有 1 个输出。

输入样例:

7/18 13/20 12

输出样例:

5/12 7/12

思路: 

1.先求出三者的最小公倍数sum

2.将两个正分数以最小公倍数作为分母,得到新的分子,以分子a,b作为边界(一定要判断二者的大小,坑!!!)

如7/18  13/20 ->70/180  117/180

3.判断分子之间,与最小公倍数有公约数c(=sum/key)的数字,并判断该数字除以公约数c之后,与key有无公约数,若没有公约数则保存下来!

坑!!!

1.列出它们之间分母为 K 的最简分数

2.给出的两个正分数不知道谁大谁小

#include <bits/stdc++.h>

using namespace std;

//计算最小公倍数
int commonSum(int x,int y)
{
    int m = x, n = y,z;
    while (y != 0)
    {
        z = x%y;
        x = y;
        y = z;
    }
    return m*n/x;
}

//计算最大公约数
int commonNum(int x,int y)
{
    int m = x, n = y,z;
    while (y != 0)
    {
        z = x%y;
        x = y;
        y = z;
    }
    return x;
}

int num[1000100];
int main()
{
    int n1,m1,n2,m2,key;
    int a,b,c,t,count = 0;
    int sum;
    scanf ("%d/%d %d/%d %d",&n1,&m1,&n2,&m2,&key);
    sum = commonSum(m1,m2);//两个分母的最小公倍数
    sum = commonSum(sum,key);//三者之间的最小公倍数!!!
    a = sum/m1*n1;//左边界
    b = sum/m2*n2;//右边界
    c = sum/key;
    if (a>b){//一定注意二者不一定谁大谁小!!!
        t = a;
        a = b;
        b = t;
    }
    for (int i = a+1; i < b; i++)//两个数之间,不包括边界!!!
    {
        if (i%c==0)
        {
            int p = i/c;
            if (commonNum(p,key)==1)
                num[count++] = p;
        }
    }
    for (int i=0; i<count; i++)
    {
        if (i==count-1)
            printf("%d/%d\n",num[i],key);
        else
            printf("%d/%d ",num[i],key);
    }


    return 0;
}

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值