一个分数一般写成两个整数相除的形式:N/M,其中 M 不为0。最简分数是指分子和分母没有公约数的分数表示形式。
现给定两个不相等的正分数 N1/M1 和 N2/M2,要求你按从小到大的顺序列出它们之间分母为 K 的最简分数。
输入格式:
输入在一行中按 N/M 的格式给出两个正分数,随后是一个正整数分母 K,其间以空格分隔。题目保证给出的所有整数都不超过 1000。
输出格式:
在一行中按 N/M 的格式列出两个给定分数之间分母为 K 的所有最简分数,按从小到大的顺序,其间以 1 个空格分隔。行首尾不得有多余空格。题目保证至少有 1 个输出。
输入样例:
7/18 13/20 12
输出样例:
5/12 7/12
思路:
1.先求出三者的最小公倍数sum
2.将两个正分数以最小公倍数作为分母,得到新的分子,以分子a,b作为边界(一定要判断二者的大小,坑!!!)
如7/18 13/20 ->70/180 117/180
3.判断分子之间,与最小公倍数有公约数c(=sum/key)的数字,并判断该数字除以公约数c之后,与key有无公约数,若没有公约数则保存下来!
坑!!!
1.列出它们之间分母为 K 的最简分数
2.给出的两个正分数不知道谁大谁小
#include <bits/stdc++.h>
using namespace std;
//计算最小公倍数
int commonSum(int x,int y)
{
int m = x, n = y,z;
while (y != 0)
{
z = x%y;
x = y;
y = z;
}
return m*n/x;
}
//计算最大公约数
int commonNum(int x,int y)
{
int m = x, n = y,z;
while (y != 0)
{
z = x%y;
x = y;
y = z;
}
return x;
}
int num[1000100];
int main()
{
int n1,m1,n2,m2,key;
int a,b,c,t,count = 0;
int sum;
scanf ("%d/%d %d/%d %d",&n1,&m1,&n2,&m2,&key);
sum = commonSum(m1,m2);//两个分母的最小公倍数
sum = commonSum(sum,key);//三者之间的最小公倍数!!!
a = sum/m1*n1;//左边界
b = sum/m2*n2;//右边界
c = sum/key;
if (a>b){//一定注意二者不一定谁大谁小!!!
t = a;
a = b;
b = t;
}
for (int i = a+1; i < b; i++)//两个数之间,不包括边界!!!
{
if (i%c==0)
{
int p = i/c;
if (commonNum(p,key)==1)
num[count++] = p;
}
}
for (int i=0; i<count; i++)
{
if (i==count-1)
printf("%d/%d\n",num[i],key);
else
printf("%d/%d ",num[i],key);
}
return 0;
}