【PAT乙级】1062 最简分数

一个分数一般写成两个整数相除的形式:N/M,其中 M 不为0。最简分数是指分子和分母没有公约数的分数表示形式。

现给定两个不相等的正分数 N​1​​/M​1​​ 和 N​2​​/M​2​​,要求你按从小到大的顺序列出它们之间分母为 K 的最简分数。

输入格式:

输入在一行中按 N/M 的格式给出两个正分数,随后是一个正整数分母 K,其间以空格分隔。题目保证给出的所有整数都不超过 1000。

输出格式:

在一行中按 N/M 的格式列出两个给定分数之间分母为 K 的所有最简分数,按从小到大的顺序,其间以 1 个空格分隔。行首尾不得有多余空格。题目保证至少有 1 个输出。

输入样例:

7/18 13/20 12

输出样例:

5/12 7/12

个人理解

本题有两种思路。

第一种

这种思路是直接找到最简分数分子的范围,通过begin = n1*k/m1 + 1【这个+1我一开始错误地处理成只在n1*k%m1 != 0的时候+1,导致第三个测试点一直过不去,后来突然意识到无论什么时候初始点都要在整除的结果上+1】,end = n2*k/m2【当n2*k) % m2 == 0时需要将end --】。然后直接在这个范围内进行gcd的检查即可。

题目中还有一个坑点就是N1/M1和N2/M2的大小不确定。

说明:使用这种思路是因为题目中其实没有规定是真分数【虽然测试数据都是真分数】,而且比进行遍历优化了一些【虽然只优化了一点点】。

代码实现

#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <algorithm>
#include <iostream>
#define ll long long
#define ep 1e-5
#define INF 0x7FFFFFFF

int const maxn = 1005;

using namespace std;

//寻找最大公约数
int gcd(int a, int b) {
    if (b == 0)
        return a;
    a = abs(a);
    b = abs(b);
    return gcd(b, a%b);
}

int main() {
    //初始化
    int n1, m1, n2, m2, k, cnt = 0;

    //输入
    scanf("%d/%d %d/%d %d", &n1, &m1, &n2, &m2, &k);

    //Calculate
    if (n1*m2 > n2*m1) {
        swap(n1, n2);
        swap(m1, m2);
    }
    
    //找到范围
    int begin = n1*k/m1 + 1, end = n2*k/m2;
    if ((n2*k) % m2 == 0) {
        end --;
    }

    //在范围内寻找并输出
    for (int i = begin; i <= end; i ++) {
        if (gcd(i, k) == 1) {
            if (cnt != 0) cout << " ";
            cout << i << "/" << k;
            cnt ++;
        }
    }
    
    return 0;
}

第二种

这种思路其实就是在真分数的范围内进行遍历寻找,满足gcd == 1的最简真分数输出即可。

说明:这种方法是我在第一种想法一直AC不过的时候重写的,然后AC了,后来不甘心第一种怎么会出错,结果可以用来测试,最后通过它找到了第一种思路中的bug。

代码实现

#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <algorithm>
#include <iostream>
#define ll long long
#define ep 1e-5
#define INF 0x7FFFFFFF

int const maxn = 1005;

using namespace std;

//寻找最大公约数
int gcd(int a, int b) {
    if (b == 0)
        return a;
    a = abs(a);
    b = abs(b);
    return gcd(b, a%b);
}

int main() {
    //初始化
    int n1, m1, n2, m2, k, cnt = 0;

    //输入
    scanf("%d/%d %d/%d %d", &n1, &m1, &n2, &m2, &k);

    //Calculate
    if (double(1.0*n1/m1) > double(1.0*n2/m2)) {
        swap(n1, n2);
        swap(m1, m2);
    }

    for (int i = 1; i < k; i ++) {
        //下列两种边界条件方法都可以,乘法可以避免浮点转化的问题
        //if (i > 1.0*n1*k/m1 && i < 1.0*n2*k/m2 && gcd(i,k) == 1) {
        if (i*m1 > n1*k && i*m2 < n2*k && gcd(i, k) == 1) {
            if (cnt != 0) cout << " ";
            cout << i << "/" << k;
            cnt ++;
        }
    }
    
    return 0;
}

总结

学习不息,继续加油

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值