科研如挖井

闲来无事,随便翻阅组里以前发表的论文,顿生感触----科研如挖井,而出成果则如打出了一口好井;要得到汩汩甘泉,不光在充分调研的基础上选址,还要锲而不舍地在同一片土地上辛勤耕耘.

更多的时候,努力比方向更重要,所以在选址的时候要有类似地质学家的敏锐目光,确定这片土地上劳动一段时间一定会找到水源;不过做研究生的时候大部分方向 都是老板定的,眼光卓越的老板一般会告诉你,这个课题做出来一定能发很高档次的文章,而一般的老板则可能说,咱先做吧,看看会出什么结果.选好地址后,只 有经过长期艰苦卓绝的努力才能找到水源,粗心大意的人则多数时候与甘泉失之交臂,没有耐力的人往往半途而废,而科研的棘手之处在于很难预测哪里是"the end of the story".就我个人来说,很多时候,不知道是该另辟蹊径,还是学习爱迪生的执著,相信在失败999次之后的第1000次一定会成功地发明灯泡?这样的 人力物力投资到底值不值得?这是我的大多困惑所在.

对于研究组来说,集中多数人力物力打一口井似乎是一种很高产的方式.老板刚来时,组里大部分研究生都集中在纳米颗粒和嵌段共聚物的自主装上,结果很快就发 了一篇Angew.Chem,接着又是Langmuir, JPCC,后来一个动手能力很强的研究生又在短时间内发了Small和JACS,并且这个课题目前还在继续延伸.目前可以说组里对这个体系的理解算是比较 透彻了.相反,同时起步的其他课题虽然也有比较大的进展,但是相比这个课题来说略显零碎,不成体系,给人一种东打一枪西打一炮的感觉.不过老板的这种决策 也不能说错,她当初选址的时候可能想到惟有广挖井才能保证实验室整体在一定时间内有所产出,而不是在一棵树上吊死(如果运气不好的话).只是对于研究生来 说,是一种折磨.刚进组老板就给你一个实验室没有人以前做过的课题,而你不知深浅地一脚踏进去,就只有看造化了---要么运气特好,要么能力特强,才有可 能短时间内出成果,而大多数人则郁闷至极.

在挖实验室工作这口井的同时,如果能够在家里另挖一口井以备不时之需就更好了.记得有这个一个故事,说两个和尚一直到山下同一条井里挑水,久而久之,成了 好朋友.有一天,其中一个和尚发现另外一个和尚没有来挑水,他想,可能是他病了吧;但是接下来好长时间另外一个和尚都没有来挑水,他感到纳闷,就跑去问那 个和尚.那个和尚指着院子里一口井说,这些年来我每天做完必须的功课后都会在这里挖一挖,几个星期前我终于挖出水来了,以后再也不用到山下挑水了.每天努 力一点点,长期以来,终于有了自己的井,再也不用依靠别人了,这样也很不错嘛!更何况我们有研究生这样漫长而稳定的阶段去准备自己!不论朝哪个方向挖井, 几年下来,相信收获都不小!

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值