博士生(后)什么时候熬出头啊?(博士后系列4)

久前,一个做博士后的朋友寄给我一首自创的诗感叹“碌碌朝夕逝”。回想我博士毕业后,拿到助理教授之前的 一路奔波,使我感慨甚深。从纽约博士毕业,到加州公司辞职,辗转纽约,南下北卡,北上麻州,又做了漫长无际六年半的博士后。期间一次回国,儿时伙伴已成为 国内名校正教授及校长助理。他关心地问我怎么到美十多年还读博士后啊?我当时无言以答。那时住在昂贵的波士顿靠二万元收入养家糊口,甚感压力。后来太太毕 业工作了才喘了口气。说实话如果不是太太无私支持,我不知道能否坚持下来。有些人生下来就是明星,随处有贵人相助,一生一帆风顺。我显然不属于那一类的。 不能和别人攀比啊,各有各的命!不能因为有人二十多岁就拿诺贝尔奖,其他科学家就不活了,是吧?关键是要不断超越自己。我1997年在哈佛时开始寻找教 职。每年寄求职信的邮资就上几百块,决不夸张地说凡是听说过的有位置的学校都审请过。那会儿都是印在质量好的纸上,用大信封寄出去。年复一年。一直到第三 年才靠一篇Nature杂志的论文找到。现在回想,毅力是成功的必要条件。否则即使哈佛毕业也不见得有用。我在波士顿时,就认识一男士,持有哈佛博士毕业 证书,在家做家庭主夫带小孩。但愿他后来找到如意的工作。虽然说谋事在人、成事在天,但只要有耐心,小概率事件(进入美国大学做教授)也会变成可能的。千 万不要被暂时的黑暗所吓倒,就象打扑克牌那样,运道总会转的。 想想过去看看未来,我也回了打油诗一首送给朋友:

 

春来秋去华发生,

路艰道辛靠心诚。

谋事在人成在天,

坚持不懈转运程。

 

正心态,不懈努力,博士生(后)就会熬出头。祝愿在此位置上的博友们能够超越自我,光明一定会在前方!

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值