古老的LCG(linear congruential generator)代表了最好最朴素的伪随机数产生器算法。主要原因是容易理解,容易实现,而且速度快。
LCG 算法数学上基于公式:
X(n+1) = (a * X(n) + c) % m
其中,各系数为:
模m, m > 0
系数a, 0 < a < m
增量c, 0 <= c < m
原始值(种子) 0 <= X(0) < m
其中参数c, m, a比较敏感,或者说直接影响了伪随机数产生的质量。
一般而言,高LCG的m是2的指数次幂(一般2^32或者2^64),因为这样取模操作截断最右的32或64位就可以了。多数编译器的库中使用了该理论实现其伪随机数发生器rand()。
下面是部分编译器使用的各个参数值:
LCG不能用于随机数要求高的场合,例如不能用于Monte Carlo模拟,不能用于加密应用。
LCG有一些严重的缺陷,例如如果LCG用做N维空间的点坐标,这些点最多位于m1/n超平面上(Marsaglia定理),这是由于产生的相继X(n)值的关联所致。
另外一个问题就是如果m设置为2的指数,产生的低位序列周期远远小于整体。
一般而言,输出序列的基数b中最低n位,bk = m (k是某个整数),最大周期bn.
有些场合LCG有很好的应用,例如内存很紧张的嵌入式中,电子游戏控制台用的小整数,使用高位可以胜任。
LCG的一种C++实现版本如下:
如果需要高质量的伪随机数,内存充足(约2kb),Mersenne twister算法是个不错的选择。Mersenne twister产生随机数的质量几乎超过任何LCG。不过一般Mersenne twister的实现使用LCG产生种子。
Mersenne twister是Makoto Matsumoto (松本)和Takuji Nishimura (西村)于1997年开发的伪随机数产生器,基于有限二进制字段上的矩阵线性再生。可以快速产生高质量的伪随机数,修正了古老随机数产生算法的很多缺陷。 Mersenne twister这个名字来自周期长度通常取Mersenne质数这样一个事实。常见的有两个变种Mersenne Twister MT19937和Mersenne Twister MT19937-64。
Mersenne Twister有很多长处,例如:周期2^19937 - 1对于一般的应用来说,足够大了,序列关联比较小,能通过很多随机性测试。
关于Mersenne Twister比较详细的论述请参阅http://www.cppblog.com/Chipset/archive/2009/01/19/72330.html
用Mersenne twister算法实现的伪随机数版本非常多。例如boost库中的高质量快速随机数产生器就是用Mersenne twister算法原理编写的。
下面是Mersenne twister的一个C++实现:
(注:部分内容摘自:《产生伪随机数两种常用算法》http://bbs.pfan.cn/post-293562.html)