conda创建的虚拟环境可以直接复制走放到另外一个电脑上用吗

完全没问题!

conda本身的命令里是有移植这个选项的。

很多人只知道在同一台计算机直接的克隆方法,其实跨计算机同样可以实现。

假如在本地的conda里已经有一个合适的科学计算环境(假设是DATA),如果你想再克隆一份同样的环境则通过以下方式实现,新环境是DATA_COPY。

conda create -n DATA_COPY --clone DATA

 

跨计算机的话,也是一样的。

查询conda create命令的原来说明,是这样的:

–clone ENV
Path to (or name of) existing local environment.

–clone这个参数后面的不仅可以是环境的名字,也可以是环境的路径。

所以,用这种方法我们就可以把原来电脑上目标conda环境的目录复制到新电脑上,然后再用:

conda create -n  DATA_COPY --clone ~/path

就直接一步安装了所有的包,完成了环境的移植。



原作者:A字头(知乎)
链接:https://www.zhihu.com/question/363614584/answer/957623910

### PyCharm中将第三方库安装到指定路径的方法 在PyCharm中,默认情况下,第三方库会被安装到Python解释器所关联的默认环境中。为了将这些库安装到特定位置(如D盘),可以采取几种不同的策略。 #### 方法一:创建虚拟环境并修改其位置 可以在创建新的项目时选择创建一个新的虚拟环境,并手动设定该虚拟环境保存的具体路径。具体操作如下: - 当新建或已有项目时,在`File | Settings...` (`Ctrl+Alt+S`) 或者 `PyCharm | Preferences...` (macOS)对话框里导航至`Project: <project_name> | Python Interpreter`. - 点击齿轮图标旁边的三个点(`...`),然后点击`Add...`. - 接下来可以选择`Virtualenv Environment`, 并勾选`Make available to all projects`. 这样做的好处是可以让这个环境中的包被其他任何项目访问. - 设置好目标文件夹为D盘下的某个子目录作为新虚拟环境的位置. 这种方法不仅可以让用户自定义库存储的地方,而且有助于保持不同项目的依赖隔离[^1]. #### 方法二:更改全局站点包(site-packages)指向 如果希望所有通过pip命令安装的新软件包都存放在D盘上,可以通过调整PYTHONPATH变量来实现这一点。不过需要注意这样做可能会影响到整个系统的Python环境配置: - 需要在系统级别设置环境变量PYTHONPATH, 将其值设为想要存放额外模块的绝对路径(D:\my_python_libs). - 同时还需要告知pip每次执行安装动作时都要把东西放到哪里去. 可以利用PIP_TARGET环境变量完成这项工作[Pip文档](https://pip.pypa.io/en/stable/user_guide/#using-pip-from-your-program). 此方式适用于那些不介意改变整体开发环境的人群;但对于共享计算机或多版本共存的情况需谨慎考虑[^2]. #### 方法三:离线安装wheel文件到指定位置 对于已经下载好的.whl格式轮子文件,可以直接控制它们最终安放的位置: - 把.wheel文件复制到计划使用的磁盘分区内的适当文件夹内; - 使用命令提示符(CMD),切换到上述文件所在的目录; - 输入类似于下面这样的指令:`pip install --target=D:\desired\location package.whl`. 这种方式适合网络条件不佳或者需要频繁更换电脑工作的开发者们使用[^3]. ```bash pip install --target=D:\desired\location package.whl ``` #### 方法四:Conda环境下管理包的位置 如果是基于Anaconda/Miniconda平台构建的应用程序,则推荐采用conda工具来进行包管理和部署: - 创建一个位于D盘上的全新conda环境:`conda create --prefix D:\path\to\new_env python=version`; - 激活刚刚建立起来的那个环境:`activate D:\path\to\new_env`(Windows) / `source activate D:\path\to\new_env`(Linux/macOS); - 此后在这个激活状态下运行的所有pip或conda install命令都会自动将资源放置在此处. 这提供了一种更加灵活且易于维护的方式来处理大型数据集和复杂应用的需求[^4].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值