题意:题干给出原先的图,其中有n个点,给出n-1个点的关系,问连接所有点之后最小路径和
并查集+结构体排序
Kruskal算法
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define ll long long int
struct zuobiao
{
int u,v,len;
}a[121212];
int f[100];
int cmp(zuobiao a,zuobiao b)
{
return a.len<b.len;
}
int find(int a)
{
int r=a;
while(f[r]!=r)
r=f[r];
int i=a;
int j;
while(i!=r)
{
j=f[i];
f[i]=r;
i=j;
}
return r;
}
void merge(int a,int b)
{
int A,B;
A=find(a);
B=find(b);
if(A!=B)
f[B]=A;
}
int main()
{
int n;
while(~scanf("%d",&n))
{
if(n==0)break;
for(int i=0;i<n;i++)
{
f[i]=i;
}
int cont=0;
for(int i=0;i<n-1;i++)
{
char uu[3];
char vv[3];
scanf("%s",uu);
int k;
scanf("%d",&k);
for(int j=0;j<k;j++)
{
int dis;
scanf("%s%d",vv,&dis);
a[cont].u=uu[0]-'A';
a[cont].v=vv[0]-'A';
a[cont].len=dis;
cont++;
}
}
ll output=0;
sort(a,a+cont,cmp);
for(int i=0;i<cont;i++)
{
if(find(a[i].u)!=find(a[i].v))
{
output+=a[i].len;
merge(a[i].u,a[i].v);
}
}
printf("%I64d\n",output);
}
}
转自:https://blog.csdn.net/mapoos/article/details/79551885
Kruskal算法
用途
处理最小生成树(MST)问题,即在给定的图中求树,使得这棵树拥有图中所有顶点,且所有边都是图中已知的边,且满足整棵树的边权之和最小。适用于边少的稀疏图。
算法描述
总体思路为:每次找到当前图中未被选中的边权最小的边,如果边的两个顶点不在同一个连通块中,那么就把该边加入到最小生成树集合中。具体步骤如下:
- 创建并维护一个并查集,用于判断结点所属连通块;
- 对图中所有边按边权从小到大排序;
- 依次选择每条边,判断边的顶点是否属于同一连通块,如果否则将该边加入到最小生成树中,如果是则不作处理;
- 重复步骤3直到处理完所有边,或是最小生成树中的边数已经达到 n - 1;
- 判断最小生成树中的边数,如果小于 n - 1,说明图不连通,无解。
代码实现
const int maxn = 1000;
struct edge
{
int u, v; // 边顶点
int cost; // 边权
};
edge E[maxn]; // 边数组
int n, m; // 结点数,边数
int father[maxn]; // 并查集数组
bool cmp(edge a, edge b)
{
return a.cost < b.cost; // 按照边权从小到大排序
}
int findRoot(int x) // 寻找根节点并压缩路径
{
if (x == father[x])
return x;
int root = findRoot(father[x]);
father[x] == root;
return root;
}
int Kruskal()
{
int sum = 0, numEdge = 0; // 记录边权和,最小生成树边数
for (int i = 0; i < n; i++) // 初始化并查集数组
father[i] = i;
sort(E, E + m, cmp); // 边排序
for (int i = 0; i < m; i++)
{
int rootU = findRoot(E[i].u);
int rootV = findRoot(E[i].v);
if (rootU != rootV) // 顶点属于不同连通块,则将边加入树
{
father[rootU] = rootV;
sum += E[i].cost;
numEdge++;
if (numEdge == n - 1) // 边数达到 n - 1 退出
break;
}
}
if (numEdge < n - 1) // 边数小于 n - 1,说明图不连通,无解
return - 1;
return sum; // 返回边权和
}