1、kruskal算法(克鲁斯卡尔)思想
该算法是基于贪心的思想得到的,假设有n个顶点的连通网G = {V,E} 中,最初每个顶点都是孤立点,没有边的非连通图G’= {V, E},图中每个顶点自成一个连通分量。把每条边按照权值从小到大排列,按照顺序选取每条边,若该边的两个顶点落在不同的连通分量上,则将此边加入到G’中;否则将此边舍去,重新选择下一条边。如此重复下去,直到所有顶点在同一个连通分量上为止。
2、算法流程
输入:图G(V,E)
输出:G的最小生成树
下面给出一个无向图B,我们使用Kruskal来找无向图B的最小生成树。
① 首先,根据每条边的权重把它们从小到大排序,选取权值最小的一条边(A,D),因为A,D不在同一个树,所以合并顶点A,D
所在的树。
②接着在剩下的边中找权值最小的边,找到了(C,E), C,E不在同一个树,合并顶点C,E所在的树。
③ 不断重复上面的步骤,直到所有的顶点在同一个连通分量上为止。
至此,我们找到了无向图B的最小生成树。
3、python实现
下面用python实现找到上面无向图B的最小生成树。
#coding:utf-8
from pylab import *
inf=float('inf')
#邻接矩阵表示
vexs = array([[0,7,inf,5,inf,inf,inf],#A
[7,0,8,9,7,inf,inf],#B
[inf,8,0,inf,5,inf,inf],#C
[5,9,inf,0,15,6,inf],#D
[inf,7,5,15,0,8,9],#E
[inf,inf,inf,6,8,0,11],#F
[inf,inf,inf,inf,9,11,0]])#G
lengthVex = len(vexs) #邻接矩阵大小
beginEdge = []
endEdge = []
weight = []
group = []
for i in arange(lengthVex): #生成边集数组
group.append([i])
for j in arange(i+1,lengthVex):
if(vexs[i, j]>0 and vexs[i, j]<INFINITY):
beginEdge.append(i) #每条边的起点
endEdge.append(j) #每条边的终点
weight.append(vexs[i, j]) #每条边的权值
lengthEdge = len(weight) #边的条数
sum = 0
for i in arange(lengthEdge): #遍历每条边
I = (argsort(weight))[0]
for j in arange(lengthVex):
if(beginEdge[I]) in group[j]:
m = j
if(endEdge[I]) in group[j]:
n = j
if m != n: #判断当前这条边是否属于不同的连通分量,如果是,将其合并
group[m] = group[m] + group[n]
group[n] = []
sum = sum + weight[I]
print(weight[I])
del weight[I] #删除遍历过的边以及顶点
del beginEdge[I]
del endEdge[I]
print("The length of the minimum cost spanning tree is: ",sum)
运行结果:
5,5,6,7,7,9表示组成最小生成树的边的权值,权值之和为39.