正态分布、偏度及箱线图

本文介绍了正态分布的特点,包括68-95-99.7原则,并通过偏度和非参数检验(如单样本K-S检验)来判断数据是否符合正态分布。案例中,通过偏度的右偏及K-S检验,证实了数据不符合正态分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

参考:正态分布的峰度和偏度分别为_【1003】正态分布10种鉴别方法汇总【荐藏】

数据描述

正态分布:

若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。期望值μ决定了其位置,标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。
实际应用中,许多数据集具有如图所示的对称的峰形或钟形分布,即正态分布。当数据被认为近似这种分布时,就可以运用经验法则来确定与平均数的距离在某个特定个数的标准差之内的数据值所占的比例,实际应用中可计算一些概率问题,类似购买的灯泡质量问题等,可以和假设检验相结合。
在这里插入图片描述

横轴区间(μ-σ,μ+σ)内的面积为68.268949%≈68%,数据集中约有68%的值落在一个标准差之内
横轴区间(μ-2σ,μ+2σ)内的面积为95.449974%≈95%,即数据集中约有95%的值落在两个标准差之内
横轴区间(μ-3σ,μ+3σ)内的面积为99.730020%≈99%,即数据集中约有99%的值落在三个标准差之内

偏度场景:

偏度(Skewness)可以用来度量随机变量概率分布的不对称性,可以进行正态性统计检验。
案例:某高校随机抽取600人,测得身高和体重
① 目测法检验数据是否符合正态分布
均值、中位数与众数在三种分布的关系如下,如果三者偏差太大,一般不可能符合正态分布。
在这里插入图片描述
在这里插入图片描述
偏度右偏,数据不符合正态分布
② 非参数方法-单个样本K-S检验
SPSS软件点击SPSS-分析-非参数-单个样本K-S检验
在这里插入图片描述
解读:单样本K-S检验可以验证四种分布,本例选择的是正态分布验证,非参数检验结果一般比较简单,大家看最后的P值=0.000<0.05。因此,不符合正态分布
③ 箱线图检验:
在这里插入图片描述
(此处图可替换成由标识上下四分位数图)
看长方形的上下边(上四分位数和下四分位数)和中位数之间的距离是否相等,不能偏上也不能偏下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值