【转载】MSE(均方误差)、RMSE (均方根误差)、MAE (平均绝对误差)- 机器学习 - 线性回归之模型评估

本文介绍了误差评估指标MSE(均方误差)、RMSE(均方根误差)和MAE(平均绝对误差)。通过具体实例展示了如何使用Python的sklearn库计算这三个指标,并讨论了它们在预测模型中的应用和意义。误差越大,MSE和RMSE值越高,而MAE则直接反映绝对误差的平均值。
摘要由CSDN通过智能技术生成

MSE(均方误差)、RMSE (均方根误差)、MAE (平均绝对误差)

1、MSE(均方误差)(Mean Square Error)

MSE是真实值与预测值的差值的平方然后求和平均。
在这里插入图片描述

范围[0,+∞),当预测值与真实值完全相同时为0,误差越大,该值越大。

import numpy as np
from sklearn import metrics
y_true = np.array([1.0, 5.0, 4.0, 3.0, 2.0, 5.0, -3.0])
y_pred = np.array([1.0, 4.5, 3.5, 5.0, 8.0, 4.5, 1.0])
print(metrics.mean_squared_error(y_true, y_pred)) # 8.107142857142858

2、RMSE (均方根误差)(Root Mean Square Error)

在这里插入图片描述

import numpy as np
from sklearn import metrics
y_true = np.array([1.0, 5.0, 4.0, 3.0, 2.0, 5.0, -3.0])
y_pred = np.array([1.0, 4.5, 3.5, 5.0, 8.0, 4.5, 1.0])
print(np.sqrt(metrics.mean_squared_error(y_true, y_pred)))

3、MAE (平均绝对误差)(Mean Absolute Error)

在这里插入图片描述

import numpy as np
from sklearn import metrics
y_true = np.array([1.0, 5.0, 4.0, 3.0, 2.0, 5.0, -3.0])
y_pred = np.array([1.0, 4.5, 3.5, 5.0, 8.0, 4.5, 1.0])
print(metrics.mean_absolute_error(y_true, y_pred))

4、转载自

MSE(均方误差)、RMSE (均方根误差)、MAE (平均绝对误差)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值