UVA - 11426 GCD - Extreme (II)

UVA - 11426 GCD - Extreme (II)

传送门UVA - 11426

题意

给你 n n ,让你求

i=1n1j=i+1ngcd(i,j)

题解

这道题就是个筛法的经典练习。
首先,设一个函数 f(x) f ( x )

f(x)=i=1x1j=i+1xgcd(i,j) f ( x ) = ∑ i = 1 x − 1 ∑ j = i + 1 x g c d ( i , j )

那么我们可以再设一个函数 g(x) g ( x )
g(x)=i=1x1gcd(i,x) g ( x ) = ∑ i = 1 x − 1 g c d ( i , x )

那么很显然
f(x)=f(x1)+g(x) f ( x ) = f ( x − 1 ) + g ( x )

那么我们就得到了一个递推式,这时我们就要想怎么得到所有的 g(x) g ( x )
那我们再设一个 h(n,x) h ( n , x )
h(n,x)=countni=1(gcd(n,i)=x)(ps:count) h ( n , x ) = c o u n t i = 1 n ( g c d ( n , i ) = x ) ( p s : c o u n t 是 指 求 个 数 )

那么显然
g(x)=i=1n(h(x,i)×i) g ( x ) = ∑ i = 1 n ( h ( x , i ) × i )

然后我们又知道
gcd(n,i)=x g c d ( n , i ) = x

gcd(nx,ix)=1 ⇒ g c d ( n x , i x ) = 1

那么
countni=1(gcd(nx,ix)=1)=phi(nx)(phi) c o u n t i = 1 n ( g c d ( n x , i x ) = 1 ) = p h i ( n x ) ( p h i 为 欧 拉 函 数 )

那么我们就要预处理出来所有数字的欧拉函数,然后再用筛法求出所有的 g(x) g ( x ) ,然后再推出 f(x) f ( x )
首先数字挺大的了,先写一个 O(n) O ( n ) 的欧拉筛

ll phi[maxn];
bool notp[maxn];
ll prime[maxn], tot;

void getphi(int M) {
    phi[1] = 1;
    for (int i = 2; i <= M; i++) {
        if (!notp[i]) {
            prime[++tot] = i;
            phi[i] = i - 1;
        }
        for (int j = 1; j <= tot && i * prime[j] <= M; j++) {
            notp[i * prime[j]] = true;
            if (i % prime[j] == 0) {
                phi[i * prime[j]] = phi[i] * prime[j];
                break;
            } else phi[i * prime[j]] = phi[i] * (prime[j] - 1);
        }
    }
}

实际上我们只要求出了欧拉函数就不用求 h(n,x) h ( n , x ) 了,直接筛出 g(x) g ( x ) 就行

for (int i = 1; i < maxn; ++i) {
    for (int j = i * 2; j < maxn; j += i) {
        g[j] += phi[j / i] * i;
    }
}

剩下就没有难点了

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <ctime>
#include <map>
#include <set>
#include <iomanip>
//#include <unordered_map>

#pragma comment(linker, "/STACK:102400000,102400000")
#define fir first
#define sec second
#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
#define clr(x) memset(x,0,sizeof(x))
#define cld(x) memset(x,-1,sizeof(x))
#define clx(x) memset(x,63,sizeof(x))
#define cln(x) memset(x,-64,sizeof(x))
#define rush() int T;scanf("%d",&T);for(int NUM = 1; NUM <= T ; ++NUM)
#define pi 3.1415926
#define VM 100047
#define EM 400047
#define rd(x) scanf("%d",&x);
#define seed() srand((unsigned)time(NULL))
#define random(a, b) rand() % (b - a + 1) + a
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;

const int inf = 0x3f3f3f3f;
const ll llf = 0x3f3f3f3f3f3f3f3f;
const int maxn = (int) 4e6 + 7;
const double eps = 1e-10;
const ll mod1 = (int) 1e9 + 7;
const ll mod2 = 998244353;
const ll has = 99959;
const int dx[] = {0, 1, 0, -1};
const int dy[] = {1, 0, -1, 0};
ll phi[maxn];
bool notp[maxn];
ll prime[maxn], tot;

void getphi(int M) {
    phi[1] = 1;
    for (int i = 2; i <= M; i++) {
        if (!notp[i]) {
            prime[++tot] = i;
            phi[i] = i - 1;
        }
        for (int j = 1; j <= tot && i * prime[j] <= M; j++) {
            notp[i * prime[j]] = true;
            if (i % prime[j] == 0) {
                phi[i * prime[j]] = phi[i] * prime[j];
                break;
            } else phi[i * prime[j]] = phi[i] * (prime[j] - 1);
        }
    }
}

ll g[maxn], f[maxn];

int main() {
    std::ios::sync_with_stdio(false);
#ifndef ONLINE_JUDGE
    freopen("in.txt", "r", stdin);
    freopen("out.txt", "w", stdout);
#endif
    clr(notp);
    getphi(maxn - 1);
    ll n;
    for (int i = 1; i < maxn; ++i) {
        for (int j = i * 2; j < maxn; j += i) {
            g[j] += phi[j / i] * i;
        }
    }
    for (int i = 2; i < maxn; ++i) {
        f[i] = f[i - 1] + g[i];
    }
    while (~scanf("%lld", &n) && n) {
        printf("%lld\n",f[n]);
    }


    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值