欧拉函数

定义: φ ( n ) = ∑ i = 1 n [ gcd ⁡ ( i , n ) = 1 ] \varphi(n)=\sum\limits_{i=1}^n\big[\gcd(i,n)=1\big] φ(n)=i=1n[gcd(i,n)=1]

定理1: φ ( 1 ) = 1 \varphi(1)=1 φ(1)=1

定理2: φ ( p ) = p − 1 ( p \varphi(p)=p-1\qquad(p φ(p)=p1(p是素数 ) ) )

定理3: φ ( p k ) = p k − p k − 1 = p k ( 1 − 1 p ) \varphi(p^k)=p^k-p^{k-1}=p^k(1-\frac{1}{p}) φ(pk)=pkpk1=pk(1p1) ( p \qquad (p (p是素数 ) ) )

定理4: φ ( p ⋅ q ) = φ ( p ) ⋅ φ ( q ) \varphi(p\cdot q)=\varphi(p)\cdot\varphi(q) φ(pq)=φ(p)φ(q) ( gcd ⁡ ( p , q ) = 1 ) \qquad \big(\gcd(p,q)=1\big) (gcd(p,q)=1)
证明:
设: m ∈ [ 1 , p ⋅ q ) m\in[1,p\cdot q) m[1,pq) gcd ⁡ ( m , p ⋅ q ) = 1 \gcd(m,p\cdot q)=1 gcd(m,pq)=1
那么: { m % p = x m % q = y \begin{cases}m\%p=x\\m\%q=y \end{cases} {m%p=xm%q=y 即: { m = x ( % p ) m = y ( % q ) \begin{cases}m=x(\%p)\\m=y(\%q) \end{cases} {m=x(%p)m=y(%q)且: gcd ⁡ ( m , p ) = gcd ⁡ ( m , q ) = 1 \gcd(m,p)=\gcd(m,q)=1 gcd(m,p)=gcd(m,q)=1
根据中国剩余定理: 该方程在模 ( p ⋅ q ) (p \cdot q) (pq)下有唯一解
即: m = ( x ⋅ q ⋅ ( q − 1 ( % p ) ) + y ⋅ p ⋅ ( p − 1 ( % q ) ) ) % ( p ⋅ q ) m=\Big(x\cdot q\cdot\big(q^{-1}(\%p)\big)+y\cdot p\cdot\big(p^{-1}(\%q)\big)\Big)\%(p\cdot q) m=(xq(q1(%p))+yp(p1(%q)))%(pq)

定理5: φ ( n ) = n ( 1 − 1 p 1 ) ⋅ ( 1 − 1 p 2 ) ⋯ ( 1 − 1 p k ) = n ∏ i = 1 k ( 1 − 1 p i ) \varphi(n)=n(1-\frac{1}{p_1})\cdot(1-\frac{1}{p_2})\cdots(1-\frac{1}{p_k})=n\prod_{i=1}^k(1-\frac{1}{p_i}) φ(n)=n(1p11)(1p21)(1pk1)=ni=1k(1pi1)
( n = p 1 e 1 ⋅ 2 e 2 ⋯ p k e k ) (n=p_1^{e_1}\cdotp_2^{e_2}\cdots p_k^{e_k}) (n=p1e12e2pkek)其中 p 1 , p 2 , ⋯   , p k p_1,p_2,\cdots,p_k p1,p2,,pk为素数
根据定理4可证明

定理6: a φ ( p ) ≡ 1 ( % p ) a^{\varphi(p)}\equiv1(\%p) aφ(p)1(%p) ( gcd ⁡ ( a , p ) = 1 ) \qquad\big(\gcd(a,p)=1\big) (gcd(a,p)=1)
证明:
设: 与 p p p互质且小于 p p p φ ( p ) \varphi(p) φ(p)分别为 b 1 , b 2 , ⋯   , b φ ( p ) b_1,b_2,\cdots,b_{\varphi(p)} b1,b2,,bφ(p)
那么推理: a ⋅ b 1 % p , a ⋅ b 2 % p , ⋯   , a ⋅ b φ ( p ) % p a\cdot b_1\%p,a\cdot b_2\%p,\cdots,a\cdot b_{\varphi(p)}\%p ab1%p,ab2%p,,abφ(p)%p两两不同, 且分别等于 b 1 , b 2 , ⋯   , b φ ( p ) b_1,b_2,\cdots,b_{\varphi(p)} b1,b2,,bφ(p)
推理证明:
\qquad 因为: a a a b k b_k bk都与 p p p互质, 所以 a ⋅ b k a\cdot b_k abk也与 p p p互质
\qquad 假设: a ⋅ b i = a ⋅ b j ( % p ) a\cdot b_i=a\cdot b_j(\%p) abi=abj(%p)
\qquad 因为: gcd ⁡ ( a , p ) = 1 \gcd(a,p)=1 gcd(a,p)=1 1 ≤ b i &lt; p 1\le b_i\lt p 1bi<p 1 ≤ b j &lt; p 1\le b_j\lt p 1bj<p
\qquad 那么: b i = b j b_i=b_j bi=bj
所以: ( a ⋅ b 1 % p ) ⋅ ( a ⋅ b 2 % p ) ⋯ ( a ⋅ b φ ( p ) % p ) = ( b 1 ⋅ b 2 ⋯ b φ ( p ) ) % p (a\cdot b_1\%p)\cdot (a\cdot b_2\%p)\cdots (a\cdot b_{\varphi(p)}\%p)=(b_1\cdot b_2\cdots b_{\varphi(p)})\%p (ab1%p)(ab2%p)(abφ(p)%p)=(b1b2bφ(p))%p
即: a φ ( p ) ≡ 1 ( % p ) a^{\varphi(p)}\equiv1(\%p) aφ(p)1(%p)       ( gcd ⁡ ( a , p ) = 1 ) \ \ \ \ \ \big(\gcd(a,p)=1\big)      (gcd(a,p)=1)

引理7: 若 gcd ⁡ ( x , n ) = 1 ( x ∈ [ 1 , n ) \gcd(x,n)=1\big(x\in[1,n) gcd(x,n)=1(x[1,n) n &gt; 2 ) n&gt;2\big) n>2), 那么 gcd ⁡ ( n − x , n ) = 1 \gcd(n-x,n)=1 gcd(nx,n)=1 x ! = n − x x!=n-x x!=nx
证明:
设: gcd ⁡ ( n − x , n ) = d \gcd(n-x,n)=d gcd(nx,n)=d
那么: n − x = k 1 ⋅ d n-x=k_1\cdot d nx=k1d n = k 2 ⋅ d n=k_2\cdot d n=k2d
则: x = ( k 2 − k 1 ) ⋅ d x=(k_2-k_1)\cdot d x=(k2k1)d
因为: gcd ⁡ ( x , n ) = 1 \gcd(x,n)=1 gcd(x,n)=1
所以: gcd ⁡ ( n − x , n ) = d = 1 \gcd(n-x,n)=d=1 gcd(nx,n)=d=1
假设: x = n − x x=n-x x=nx
那么: gcd ⁡ ( x , n ) = gcd ⁡ ( x , 2 x ) = x = 1 \gcd(x,n)=\gcd(x,2x)=x=1 gcd(x,n)=gcd(x,2x)=x=1
因为: n &gt; 2 n&gt;2 n>2, 所以: n − x ≠ x n-x\neq x nx̸=x与假设不符

定理8: 当 n &gt; 2 n\gt2 n>2时, φ ( n ) \varphi(n) φ(n)为偶数
根据引理7可证明: 与 n n n互素的数总是成对出现

定理9: ∑ d = 1 n − 1 d = φ ( n ) ⋅ n 2 ( gcd ⁡ ( d , n ) = 1 ) \sum_{d=1}^{n-1}d=\frac{\varphi(n)\cdot n}{2}\quad\big(\gcd(d,n)=1\big) d=1n1d=2φ(n)n(gcd(d,n)=1)
根据引理7,定理8可证明

定理10: φ ( k ⋅ p ) = φ ( k ) ⋅ p ( p \varphi(k\cdot p)=\varphi(k)\cdot p\quad(p φ(kp)=φ(k)p(p是质数 且 k % p = 0 ) k\%p=0) k%p=0)
根据定理5可证明

定理11: φ ( k ⋅ p ) = φ ( k ) ⋅ φ ( p ) = φ ( k ) ⋅ ( p − 1 ) ( p \varphi(k\cdot p)=\varphi(k)\cdot \varphi(p)=\varphi(k)\cdot (p-1)\quad(p φ(kp)=φ(k)φ(p)=φ(k)(p1)(p是质数 且 k % p ≠ 0 ) k\%p\neq0) k%p̸=0)
根据定理4可证明

定理12: φ ( n ⋅ m ) = φ ( m ) ⋅ φ ( n ) ⋅ gcd ⁡ ( n , m ) φ ( gcd ⁡ ( n , m ) ) \varphi(n\cdotp m)=\varphi(m)\cdotp \varphi(n)\cdotp \frac{\gcd(n,m)}{\varphi(\gcd(n,m))} φ(nm)=φ(m)φ(n)φ(gcd(n,m))gcd(n,m)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值