⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪x1≡r1(%m1)x2≡r2(%m2)⋯xi≡ri(%mi)⋯xn≡rn(%mn)
gcd(mi,mj)=1 (1≤i<j≤n)
设: m=m1×m2×⋯×mn=∏ni=1mi
⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪y1≡1(%m1)y2≡1(%m2)⋯yi≡1(%mi)⋯yn≡1(%mn) ** 且 ** ⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪y1=k1⋅mm1 y2=k2⋅mm2 ⋯ yi=ki⋅mmi ⋯ yn=kn⋅mmn
那么其中的一个解为: x0=r1⋅y1+r2⋅y2+⋯+rn⋅yn=∑ni=1(ri⋅yi)
考虑其中一个等式: mmi⋅ki≡1(%mi)
因为: mi 与 mmi 互质
得: ki=(mmi)−1(%mi)
所以: yi=mmi⋅((mmi)−1(%mi))
所以: x0=∑ni=1(ri⋅mmi⋅((mmi)−1(%mi)))