Chinese Remainder Theore

x1r1(%m1)x2r2(%m2)xiri(%mi)xnrn(%mn)

gcd(mi,mj)=1      (1i<jn)

设: m=m1×m2××mn=ni=1mi

y11(%m1)y21(%m2)yi1(%mi)yn1(%mn) ** 且 ** y1=k1mm1 y2=k2mm2  yi=kimmi  yn=knmmn

那么其中的一个解为: x0=r1y1+r2y2++rnyn=ni=1(riyi)

考虑其中一个等式: mmiki1(%mi)

因为: mi mmi 互质

得: ki=(mmi)1(%mi)

所以: yi=mmi((mmi)1(%mi))

所以: x0=ni=1(rimmi((mmi)1(%mi)))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值