NLP/LLMs
文章平均质量分 88
本文章主要分享自然语言技术及其大语言模型领域的知识和案例,理论知识与实战案例相互结合。NLP (Natural Language Processing) 是人工智能(AI)的一个子领域。自然语言是人类智慧的结晶,自然语言处理是人工智能中最为困难的问题之一,而对自然语言处理的研究也是充满魅力和挑战的。
一个处女座的程序猿
2025年初博主2本新书(机器学习耗时5年/大模型耗时3年)正在热售中!人工智能硕学历,拥有十多项发专利(6项)和软著(9项),包括国际期刊SCI内多篇论文,多个国家级证书(2个国三级、3个国四级),曾获国内外“人工智能算法”竞赛(包括国家级省市级等,一等奖5项、二等奖4项、三等奖2项)证书十多项,以上均第一作者身份,并拥有省市校级个人荣誉证书十多项。目前也是国内知名博主,连续3年获CSDN十大博客之星,荣获达摩院评测官、阿里社区/CSDN/华为社区等十多个开发者社区专家博主荣誉,曾受邀阿里/华为/谷歌等社区采访-评审-论坛几十次。截止2022年,AI领域粉丝超100万,文章阅读量超5000万
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
LLMs之AgenticLLM:DeepAnalyze的简介、安装和使用方法、案例应用之详细攻略
LLMs之AgenticLLM:DeepAnalyze的简介、安装和使用方法、案例应用之详细攻略目录DeepAnalyze的简介DeepAnalyze的安装和使用方法DeepAnalyze的案例应用DeepAnalyze的简介DeepAnalyze 是由中国人民大学和清华大学的研究人员推出的首个用于自主数据科学的代理式大语言模型(Agentic LLM)。它的核心能力是在无需人工干预的情况下,自主完成各种以数据为中心的任务。该项目旨在赋能用户,使其能原创 2025-11-19 08:22:20 · 228 阅读 · 0 评论 -
LLMs之Agent:Knotie-AI的简介、安装和使用方法、案例应用之详细攻略
LLMs之Agent:Knotie-AI的简介、安装和使用方法、案例应用之详细攻略目录Knotie-AI的简介Knotie-AI的安装和使用方法Knotie-AI的案例应用Knotie-AI的简介Knotie-AI 是一个完全开源的人工智能销售代理(AI Sales Agent),它能够处理入站(inbound)和出站(outbound)的沟通任务,直接与您的潜在客户(leads)和现有客户进行交流。该项目旨在通过自动化销售沟通流程,提升效率和客户互动体验。Github地原创 2025-11-19 07:59:37 · 379 阅读 · 0 评论 -
LLMs之Multi-Agent:《ColorAgent: Building A Robust, Personalized, and Interactive OS Agent》翻译与解读
LLMs之Multi-Agent:《ColorAgent: Building A Robust, Personalized, and Interactive OS Agent》翻译与解读目录《ColorAgent: Building A Robust, Personalized, and Interactive OS Agent》翻译与解读Abstract1、Introduction7 Con原创 2025-11-18 08:29:44 · 598 阅读 · 0 评论 -
High&NewTech:Gartner发布2026年十大战略技术趋势《Gartner Identifies the Top Strategic Technology Trends for 2026》
High&NewTech:Gartner发布2026年十大战略技术趋势《Gartner Identifies the Top Strategic Technology Trends for 2026》翻译与解读—从算力、物理世界、数字化到安全与地缘策略从算力到溯源—解读 Gartner 2026 年十大战略技术趋势地址https://www.gartner.com/en/newsroom/press-releases/2025-10-20-gartner-ide原创 2025-11-18 00:00:34 · 530 阅读 · 0 评论 -
LLMs之inference:《Reasoning with Sampling: Your Base Model is Smarter Than You Think》翻译与解读
LLMs之inference:《Reasoning with Sampling: Your Base Model is Smarter Than You Think》翻译与解读目录《Reasoning with Sampling: Your Base Model is Smarter Than You Think》翻译与解读Abstract1、Introduction6 Conclusion《Reasoning with原创 2025-11-17 23:45:00 · 1155 阅读 · 0 评论 -
LLMs之RL:《SPICE: Self-Play In Corpus Environments Improves Reasoning》翻译与解读
LLMs之RL:《SPICE: Self-Play In Corpus Environments Improves Reasoning》翻译与解读《SPICE: Self-Play In Corpus Environments Improves Reasoning》翻译与解读地址https://arxiv.org/abs/2510.24684时间2025年10月28日作者MetaAbstractSel原创 2025-11-17 08:27:36 · 647 阅读 · 0 评论 -
LLMs之Agent Learning:《Agent Learning via Early Experience》翻译与解读
LLMs之Agent:《Agent Learning via Early Experience》翻译与解读目录《Agent Learning via Early Experience》翻译与解读Abstract1、Introduction7 Conclusion《Agent Learning via Early Experience》翻译与解读地址https://arxiv.or原创 2025-11-14 08:39:02 · 681 阅读 · 0 评论 -
LLMs之 Ranking:OpenRouter LLM Rankings的简介、安装和使用方法、案例应用之详细攻
LLMs之 Ranking:OpenRouter LLM Rankings的简介、安装和使用方法、案例应用之详细攻目录OpenRouter LLM Ranking的简介OpenRouter LLM Ranking的核心内容OpenRouter LLM Ranking的使用方法OpenRouter LLM Ranking的简介OpenRouter LLM Rankings 是一个动态的排行榜,它展示了在 OpenRouter 平台上各原创 2025-11-14 00:02:07 · 1220 阅读 · 0 评论 -
LLMs之GPT:GPT5.1的简介、安装和使用方法、案例应用之详细攻略
LLMs之GPT:GPT5.1的简介、安装和使用方法、案例应用之详细攻略目录GPT-5.1的简介GPT-5.1的安装和使用方法GPT-5.1的案例应用GPT-5.1的简介2025年11月12日,OpenAI发布GPT-5.1 。GPT-5.1 是对 GPT-5 系列的一次迭代升级,OpenAI 在 2025 年 11 月 12 日发布本次更新,推出了两条子型号:GPT-5.1 Instant(以对话体验为主、响应更暖、更会“聊”)和 GPT-5.1 T原创 2025-11-13 08:54:15 · 1054 阅读 · 0 评论 -
LLMs之Leaderboard:BFCL(Berkeley Function-Calling Leaderboard)的简介、安装和使用方法、案例应用之详细攻略
LLMs之Leaderboard:BFCL(Berkeley Function-Calling Leaderboard)的简介、安装和使用方法、案例应用之详细攻略目录BFCL的简介BFCL的核心内容BFCL的使用方法BFCL的简介Berkeley Function Calling Leaderboard (BFCL) V4 是一个由伯克利大学发布的功能调用(函数调用)排行榜。它的核心目标是评估大型语言模型(LLM)准确调用函数(也称为工具)的能力。该项目已经发原创 2025-05-31 08:08:44 · 584 阅读 · 0 评论 -
LLMs之Tool:social-analyzer的简介、安装和使用方法、案例应用之详细攻略
LLMs之Tool:social-analyzer的简介、安装和使用方法、案例应用之详细攻略目录social-analyzer的简介social-analyzer的安装和使用方法social-analyzer的案例应用social-analyzer的简介这是一个用于在超过1000个社交媒体网站上分析和查找个人资料的工具,提供 API、命令行界面(CLI)和 Web 应用三种形式。Social Analyzer 是一个开源情报(OSINT)工具,旨在帮助用户跨越上原创 2025-11-12 23:30:00 · 830 阅读 · 0 评论 -
XAI之Transformer/LLMs之SipIt:《Language Models are Injective and Hence Invertible》翻译与解读
XAI之Transformer/LLMs之SipIt:《Language Models are Injective and Hence Invertible》翻译与解读目录《Language Models are Injective and Hence Invertible》翻译与解读Abstract1、Introduction6 Conclusion《Language Models are原创 2025-11-12 08:26:38 · 918 阅读 · 0 评论 -
LLMs之CoT:《Verifying Chain-of-Thought Reasoning via Its Computational Graph》翻译与解读
LLMs之CoT:《Verifying Chain-of-Thought Reasoning via Its Computational Graph》翻译与解读目录《Verifying Chain-of-Thought Reasoning via Its Computational Graph》翻译与解读Abstract1、Introduction6 Conclusion《Verifying原创 2025-11-10 23:27:18 · 1021 阅读 · 0 评论 -
LLMs之Multi-Agent:BettaFish的简介、安装和使用方法、案例应用之详细攻略
LLMs之Multi-Agent:BettaFish的简介、安装和使用方法、案例应用之详细攻略目录BettaFish的简介BettaFish的安装和使用方法BettaFish的案例应用BettaFish的简介“微舆”(BettaFish)是一个从零开始实现的创新型多智能体(Multi-Agent)舆情分析系统。它的核心目标是帮助用户打破信息茧房,通过深度分析还原舆情事件的全貌,预测未来的发展趋势,并为决策提供辅助支持。该项目的设计理念是让原创 2025-11-10 23:01:47 · 1201 阅读 · 0 评论 -
LLMs之CE:《Context Engineering 2.0: The Context of Context Engineering》翻译与解读
LLMs之CE:《Context Engineering 2.0: The Context of Context Engineering》翻译与解读目录《Context Engineering 2.0: The Context of Context Engineering》翻译与解读Abstract1、Introduction8 Challenges and Future Direct原创 2025-11-09 00:46:51 · 635 阅读 · 0 评论 -
VLMs之RL之RIL:《Unified Reinforcement and Imitation Learning for Vision-Language Models》翻译与解读
VLMs之RL之RIL:《Unified Reinforcement and Imitation Learning for Vision-Language Models》翻译与解读目录《Unified Reinforcement and Imitation Learning for Vision-Language Models》翻译与解读Abstract1、Introduction6 Conclusion《U原创 2025-11-06 01:25:15 · 1059 阅读 · 0 评论 -
LLMs之RL之LRM:《A Survey of Reinforcement Learning for Large Reasoning Models》翻译与解读
LLMs之RL之LRM:《A Survey of Reinforcement Learning for Large Reasoning Models》翻译与解读目录《A Survey of Reinforcement Learning for Large Reasoning Models》翻译与解读Abstract1、Introduction原创 2025-11-06 00:55:30 · 1187 阅读 · 0 评论 -
LLMs之Agent:Agent Lightning的简介、安装和使用方法、案例应用之详细攻略
LLMs之Agent:Agent Lightning的简介、安装和使用方法、案例应用之详细攻略目录Agent Lightning的简介Agent Lightning的安装和使用方法Agent Lightning的案例应用Agent Lightning的简介Agent Lightning 是一个由微软开发的、旨在优化和训练 AI Agent 的终极训练器(The absolute trainer)。它的核心使命是“点亮”AI Agent,使其变得更加强大和高效。该项目通原创 2025-11-04 08:27:13 · 1021 阅读 · 0 评论 -
LLMs之Workflow:OpenSpec的简介、安装和使用方法、案例应用之详细攻略
LLMs之Workflow:OpenSpec的简介、安装和使用方法、案例应用之详细攻略目录OpenSpec的简介OpenSpec的安装和使用方法OpenSpec的案例应用OpenSpec的简介OpenSpec 是一种为 AI 编码助手设计的**规范驱动开发(Spec-driven development)**方法论和工具链。其核心目标是在编写任何代码之前,通过一个轻量级的规范工作流程,使人类开发者与 AI 编码助手就“要构建什么”达成共识。在原创 2025-11-04 08:08:40 · 1324 阅读 · 0 评论 -
LLMs之HPT:《Towards a Unified View of Large Language Model Post-Training》翻译与解读
LLMs之HPT:《Towards a Unified View of Large Language Model Post-Training》翻译与解读目录《Towards a Unified View of Large Language Model Post-Training》翻译与解读Abstract1、Introduction2 Related Works相关工作3 A Unified View原创 2025-11-01 15:39:54 · 1266 阅读 · 0 评论 -
LLMs之AgenticRL:《The Landscape of Agentic Reinforcement Learning for LLMs: A Survey》的翻译与解读
LLMs之AgenticRL:《The Landscape of Agentic Reinforcement Learning for LLMs: A Survey》的翻译与解读目录《The Landscape of Agentic Reinforcement Learning for LLMs: A Survey》的翻译与解读Abstract1、Introduction6 Conclusion《The原创 2025-11-01 13:37:40 · 1027 阅读 · 0 评论 -
LLMs之RAG:Morphik的简介、安装和使用方法、案例应用之详细攻略
LLMs之RAG:Morphik的简介、安装和使用方法、案例应用之详细攻略目录Morphik的简介Morphik的安装和使用方法Morphik的案例应用Morphik的简介2025年3月,Morphik 是一个为处理视觉丰富的文档和多模态数据而设计的 AI 原生工具集。它的核心目标是为开发者提供一种最佳方式,将复杂且细致入微的上下文信息集成到他们的 AI 应用中。它提供了一整套端到端的工具,用于存储、表示和搜索(包括浅层和深层)非结构化数据。项目的出发点是为了原创 2025-11-01 11:01:41 · 1258 阅读 · 0 评论 -
LLMs之SLMs:《Small Language Models are the Future of Agentic AI》的翻译与解读
LLMs之SLMs:《Small Language Models are the Future of Agentic AI》的翻译与解读目录《Small Language Models are the Future of Agentic AI》的翻译与解读Abstract1、Introduction6 LLM-to-SLM Agent Conversion Algorithm7 Call for Discussion原创 2025-10-31 08:45:57 · 988 阅读 · 0 评论 -
LLMs之MCPAgent:DeepMCPAgent的简介、安装和使用方法、案例应用之详细攻略
LLMs之MCPAgent:DeepMCPAgent的简介、安装和使用方法、案例应用之详细攻略目录DeepMCPAgent的简介DeepMCPAgent的安装和使用方法DeepMCPAgent的案例应用DeepMCPAgent的简介DeepMCPAgent 是一个模型无关、即插即用的 LangChain/LangGraph 代理框架。它的核心设计理念是让代理(Agent)完全由通过 HTTP/SSE 协议提供服务的 MCP (Model-Component原创 2025-10-28 08:45:18 · 861 阅读 · 0 评论 -
LLMs之Router:vLLM Semantic Router的简介、安装和使用方法、案例应用之详细攻略
LLMs之Router:vLLM Semantic Router的简介、安装和使用方法、案例应用之详细攻略目录vLLM Semantic Router的简介vLLM Semantic Router的安装和使用方法vLLM Semantic Router的案例应用vLLM Semantic Router的简介vLLM Semantic Router 是一个面向高性能推理场景的智能路由框架。它采用 Mixture-of-Models (MoM) 的思路,核心思想原创 2025-10-27 22:52:32 · 1223 阅读 · 0 评论 -
LLMs之RAG:《On the Theoretical Limitations of Embedding-Based Retrieval》的翻译与解读
LLMs之RAG:《On the Theoretical Limitations of Embedding-Based Retrieval》的翻译与解读目录《On the Theoretical Limitations of Embedding-Based Retrieval》的翻译与解读Abstract1、Introduction6 Conclusion《On the Theoretical Limitat原创 2025-10-26 09:44:57 · 1218 阅读 · 0 评论 -
LLMs之RAG:《REFRAG: Rethinking RAG based Decoding》的翻译与解读
LLMs之RAG:《REFRAG: Rethinking RAG based Decoding》的翻译与解读目录《REFRAG: Rethinking RAG based Decoding》的翻译与解读Abstract1、Introduction7 Conclusion《REFRAG: Rethinking RAG based Decoding》的翻译与解读地址https://arxiv.o原创 2025-10-26 08:27:14 · 1021 阅读 · 0 评论 -
LLMs之Deployment:guidellm的简介、安装和使用方法、案例应用之详细攻略
LLMs之Deployment:guidellm的简介、安装和使用方法、案例应用之详细攻略目录guidellm的简介guidellm的安装和使用方法guidellm的案例应用guidellm的简介GuideLLM 是一个用于评估和优化大型语言模型(LLM)部署的开源平台。其目标是通过模拟真实世界的推理(inference)负载,帮助用户评估在不同硬件配置、不同模型、不同部署策略下的性能、资源需求与成本。通过这种方式,GuideLLM 支持用户在生产环境将模原创 2025-10-25 21:56:37 · 1138 阅读 · 1 评论 -
LLMs之PE:PromptX(将 AI 智能体从通用助手转变为具备行业/角色能力的交互平台)的简介、安装和使用方法、案例应用之详细攻略
LLMs之PE:PromptX(将 AI 智能体从通用助手转变为具备行业/角色能力的交互平台)的简介、安装和使用方法、案例应用之详细攻略目录PromptX的简介PromptX的安装和使用方法PromptX的案例应用PromptX的简介PromptX 是由 Deepractice 开发的一款“领先的 AI 智能体上下文平台(AI Agent Context Platform)”。其核心理念为 “Chat is All you Need — 革命性的交互设计,让原创 2025-10-25 21:46:50 · 1360 阅读 · 0 评论 -
LLMs之PE:《Mind Your Tone: Investigating How Prompt Politeness Affects LLM Accuracy (short paper)》的翻译与
LLMs之PE:《Mind Your Tone: Investigating How Prompt Politeness Affects LLM Accuracy (short paper)》的翻译与解读目录《Mind Your Tone: Investigating How Prompt Politeness Affects LLM Accuracy (short paper)》的翻译与解读Abstract1、Introduct原创 2025-10-25 21:15:19 · 807 阅读 · 0 评论 -
LLMs之Claude:Claude Skills的简介(并对比Projects/MCP/Custom Instructions)、安装和使用方法、案例应用之详细攻略
LLMs之Claude:Claude Skills的简介(并对比Projects/MCP/Custom Instructions)、安装和使用方法、案例应用之详细攻略目录Skills的简介Skills的安装和使用方法Skills的案例应用Skills的简介Claude Skills 是 Anthropic 公司于2025年10月16日(根据官方新闻稿日期)推出的一项功能,这是一种让Claude获取新功能的模块化能力包。其核心是一个原创 2025-10-25 20:38:18 · 1602 阅读 · 0 评论 -
AI:《State of AI Report 2025》全面解读2025年AI技术发展—洞察人工智能的未来轨迹
AI:《State of AI Report 2025》全面解读2025年AI技术发展—洞察人工智能的未来轨迹目录《State Of AI Report 2025》的翻译与解读1、背景2、简介3、核心内容4、核心结论5、对读者的启示与建议6、对未来的展望:短期 12 个月到中期 3 年《State Of AI Report 2025》的翻译与解读地址博客地址:https://www.stateof.ai/PPT地址:ht原创 2025-10-25 16:51:29 · 3979 阅读 · 0 评论 -
NLP之Embedding:Youtu-Embedding的简介、安装和使用方法、案例应用之详细攻略
NLP之Embedding:Youtu-Embedding的简介、安装和使用方法、案例应用之详细攻略目录Youtu-Embedding的简介Youtu-Embedding的安装和使用方法Youtu-Embedding的案例应用Youtu-Embedding的简介2025年9月底,Youtu-Embedding 是由腾讯优图实验室(Tencent Youtu Lab)开发的一款业界领先的通用文本表示模型。该模型旨在为各种自然语言处理(NLP原创 2025-10-25 10:07:59 · 1049 阅读 · 0 评论 -
LLMs之SFT之CHORD:《On-Policy RL Meets Off-Policy Experts: Harmonizing Supervised Fine-Tuning and Reinfo
LLMs:《On-Policy RL Meets Off-Policy Experts: Harmonizing Supervised Fine-Tuning and Reinforcement Learning via Dynamic Weighting》的翻译与解读目录《On-Policy RL Meets Off-Policy Experts: Harmonizing Supervised Fine-Tuning and原创 2025-10-23 23:00:00 · 1117 阅读 · 0 评论 -
LLMs:Alpha Arena—让AI在真实投资市场中决斗—Nof1的“实战型AI金融实验”全解析—实验首阶段结果:DeepSeek称王,GPT-5意外滑铁卢
LLMs:Alpha Arena—让AI在真实投资市场中决斗—Nof1的“实战型AI金融实验”全解析—Alpha Arena 实验首阶段结果:DeepSeek称王,GPT-5意外滑铁卢目录Nof1·Alpha Arena项目的简介Nof1·Alpha Arena项目的概述Nof1·Alpha Arena项目的简介Nof1·Alpha Arena 是一个将 AI 模型放入 真实金融市场 的公开实验平台。其核心理念是:让多个 AI 模型在相原创 2025-10-22 08:50:09 · 4870 阅读 · 0 评论 -
LLMs之RL:《FlowRL: Matching Reward Distributions for LLM Reasoning》的翻译与解读
LLMs之RL:《FlowRL: Matching Reward Distributions for LLM Reasoning》的翻译与解读目录LLMs之RL:《FlowRL: Matching Reward Distributions for LLM Reasoning》的翻译与解读《FlowRL: Matching Reward Distributions for LLM Reasoning》的翻译与解读Abstrac原创 2025-10-19 23:59:48 · 949 阅读 · 1 评论 -
LLMs之RAG之Benchmark:面向真实场景的检索嵌入基准(RTEB)—理论、设计与实践指南
LLMs之RAG之Benchmark:面向真实场景的检索嵌入基准(RTEB)—理论、设计与实践指南目录面向真实场景的检索嵌入基准(RTEB)—理论、设计与实践指南1. 为什么现有基准测试存在不足2. RTEB的简介3. 真正泛化的混合策略(A Hybrid Strategy for True Generalization)4. 面向真实世界领域构建(Built for Real-World Domains)5. 启动 RTEB:社区协作(Lau原创 2025-10-19 23:46:15 · 1455 阅读 · 0 评论 -
AGI之Multi-Agent:Multi-Agent的概述(核心技术点、代表性项目、挑战与未来)—持续更新2025年度多智能体相关的论文、前沿技术实践、代表性项目案例之详细攻略
AGI之Multi-Agent:2025年度基于Multi-Agent技概述核心技术/代表性项目/挑战与未来)—持续更新相关论文、前沿技术实践、代表性项目案例之详细攻略目录相关文章Multi-Agent的核心概述:核心技术+代表性项目+挑战与未来2025年7月2025年6月2025年5月2025年4月2025年3月2025年2月2025年1月相关文章AGI之Agent:Agent(一种训练原创 2025-10-19 22:34:29 · 2306 阅读 · 0 评论 -
LLMs之MultiAgent:OpenAgents(创建AI智能体网络)的简介、安装和使用方法、案例应用之详细攻略
LLMs之MultiAgent:OpenAgents(创建AI智能体网络)的简介、安装和使用方法、案例应用之详细攻略目录OpenAgents的简介OpenAgents的案例应用OpenAgents的简介OpenAgents是一个开源项目,旨在创建AI智能体网络(AI Agent Networks),并将智能体连接起来进行开放协作。OpenAgents提供了一个基础的网络基础设施,使AI智能体能够无缝连接和协作。目标与愿景:>> 旨在数秒内启动您的智能体网络,并通原创 2025-10-18 21:20:41 · 946 阅读 · 0 评论 -
LLMs:nanochat(仿照GPT-3 Small)的简介、安装和使用方法、案例应用之详细攻略
LLMs:nanochat(仿照GPT-3 Small)的简介、安装和使用方法、案例应用之详细攻略目录nanochat的简介nanochat的安装与使用方法nanochat的案例应用nanochat的简介2025年10月13日,nanochat 是 Andrej Karpathy 发布的一个 “full-stack”(端到端)最小化实现,目的是把一个类似 ChatGPT 的大语言模型(LLM)流水线放在一个清洁、最小、可 hack 的代码库里:从分词/toke原创 2025-10-18 23:45:00 · 1544 阅读 · 0 评论
分享