
NLP/LLMs
文章平均质量分 87
本文章主要分享自然语言技术及其大语言模型领域的知识和案例,理论知识与实战案例相互结合。NLP (Natural Language Processing) 是人工智能(AI)的一个子领域。自然语言是人类智慧的结晶,自然语言处理是人工智能中最为困难的问题之一,而对自然语言处理的研究也是充满魅力和挑战的。
一个处女座的程序猿
2025年初博主2本新书(机器学习耗时5年/大模型耗时3年)即将开售!人工智能硕学历,拥有十多项发专利(6项)和软著(9项),包括国际期刊SCI内多篇论文,多个国家级证书(2个国三级、3个国四级),曾获国内外“人工智能算法”竞赛(包括国家级省市级等,一等奖5项、二等奖4项、三等奖2项)证书十多项,以上均第一作者身份,并拥有省市校级个人荣誉证书十多项。目前也是国内知名博主,连续3年获CSDN十大博客之星,荣获达摩院评测官、阿里社区/CSDN/华为社区等十多个开发者社区专家博主荣誉,曾受邀阿里/华为/谷歌等社区采访-评审-论坛几十次。截止2022年,AI领域粉丝超100万,文章阅读量超5000万
展开
-
LLMs之Agent:Minion Agent的简介、安装和使用方法、案例应用之详细攻略
LLMs之Agent:Minion Agent的简介、安装和使用方法、案例应用之详细攻略目录Minion Agent 简介Minion Agent 的安装和使用方法Minion Agent 案例应用Minion Agent 简介Minion Agent 是一个简单的代理框架,它集成了浏览器使用、模型上下文协议 (MCP)、自动工具调用、任务规划和深度研究等多种能力。它旨在解决 AI 开发中框架碎片化的问题,通过统一的接口整合多种 AI 工具,支持多智能体任原创 2025-05-18 10:00:45 · 851 阅读 · 0 评论 -
LLMs之PE:《一个提示词可以绕过所有主流LLM的安全防护》的解读
LLMs之PE:《一个提示词可以绕过所有主流LLM的安全防护》的解读目录《一个提示词可以绕过所有主流LLM的安全防护》的解读引言One Prompt to Rule Them All(一个提示词统治一切)Fiction as a Loophole(虚构作为漏洞)Extracting the Brain Behind the Bot(提取机器人背后的“大脑”)Consequences Beyond the Screen(屏幕之外的后果)RLHF Is Not a原创 2025-05-18 09:57:52 · 568 阅读 · 0 评论 -
LLMs之Code:SWE-1 模型的简介、特点、安装和使用方法、案例应用之详细攻略
LLMs之Code:SWE-1 模型的简介、特点、安装和使用方法、案例应用之详细攻略目录SWE-1 简介SWE-1 的安装和使用方法SWE-1 的案例应用SWE-1 简介Windsurf 推出了 SWE-1,这是一个专为整个软件开发生命周期构建的 AI 模型系列。与传统的代码生成模型不同,SWE-1 旨在协助完成实际的软件工程工作流程,处理从不完整的代码状态到多表面任务编排的所有事情。SWE-1 是 Windsurf 首个前沿模型系列,其性能可与软件相关任务的基础模型相媲美原创 2025-05-18 09:47:37 · 741 阅读 · 0 评论 -
LLMs:《POE报告:2025年春季人工智能模型使用趋势》解读
LLMs:《POE报告:2025年春季人工智能模型使用趋势》解读目录《报告:2025年春季人工智能模型使用趋势》解读1. 引言2. 前沿实验室快速发布更智能的通用文本模型3. 推理模型在 DeepSeek 今年早些时候的爆红入场后持续使用4. 图像生成在质量和符合性提高的情况下变得越来越具有竞争力5. Kling 2.0 在仅三周内迅速成为视频生成的有力竞争者6. ElevenLabs 在音频生成中保持领先,尽管竞争的早期迹象正在上升7. 结论《报告:2025年原创 2025-05-18 23:29:54 · 891 阅读 · 0 评论 -
AI:OpenAI论坛分享—《AI重塑未来:技术、经济与战略》
AI:OpenAI论坛分享—《AI重塑未来:技术、经济与战略》目录OpenAI论坛分享—《AI重塑未来:技术、经济与战略》1. 引言2. AI 发展的新时代3. 预训练范式4. 推理范式5. 地缘政治讨论总结6. 小组讨论总结7. 总结OpenAI论坛分享—《AI重塑未来:技术、经济与战略》官网文章:Thinking Machines & AI Economics: How Reasoning AI Is Rewriting the Future of Wor原创 2025-05-18 23:11:38 · 764 阅读 · 0 评论 -
ChatGPT:OpenAI Codex—一款基于云的软件工程 AI 代理,赋能 ChatGPT,革新软件开发模式
ChatGPT:OpenAI Codex—一款基于云的软件工程 AI 代理,赋能 ChatGPT,革新软件开发模式目录OpenAI Codex—一款基于云的软件工程 AI 代理,赋能 ChatGPT,革新软件开发模式OpenAI Codex—一款基于云的软件工程 AI 代理,赋能 ChatGPT,革新软件开发模式 官网文章:https://openai.com/index/introducing-codex/1. Codex 简介Codex 是一个旨在通过并行处理编码任务原创 2025-05-18 11:06:48 · 979 阅读 · 0 评论 -
LLMs之Benchmark:《BrowseComp-ZH: Benchmarking Web Browsing Ability of Large Language Models in Chinese
LLMs之Benchmark:《BrowseComp-ZH: Benchmarking Web Browsing Ability of Large Language Models in Chinese》翻译与解读目录《BrowseComp-ZH: Benchmarking Web Browsing Ability of Large Language Models in Chinese》翻译与解读Abstract1、Introduction原创 2025-05-12 00:15:53 · 1559 阅读 · 0 评论 -
LLMs之MCP:2025年5月2日,Anthropic 宣布 Claude 重大更新:集成功能上线,研究能力大幅提升
LLMs之MCP:2025年5月2日,Anthropic 宣布 Claude 重大更新:集成功能上线,研究能力大幅提升目录2025年5月2日,Anthropic 宣布 Claude 重大更新:集成功能上线,研究能力大幅提升一、Integrations(集成)二、高级研究功能 (Advanced Research)三、入门指南 (Getting started)2025年5月2日,Anthropic 宣布 Claude 重大更新:集成功能上线,研究能力大幅提升地址文章地址原创 2025-05-11 23:45:49 · 1296 阅读 · 0 评论 -
MLLMs之UniME:《Breaking the Modality Barrier: Universal Embedding Learning with Multimodal LLMs》翻译与解读
MLLMs之UniME:《Breaking the Modality Barrier: Universal Embedding Learning with Multimodal LLMs》翻译与解读目录《Breaking the Modality Barrier: Universal Embedding Learning with Multimodal LLMs》翻译与解读Abstract1、IntroductionConclusion《B原创 2025-05-11 13:07:52 · 1257 阅读 · 0 评论 -
LLMs之Mistral Medium 3:Mistral Medium 3的简介、安装和使用方法、案例应用之详细攻略
LLMs之Mistral Medium 3:Mistral Medium 3的简介、安装和使用方法、案例应用之详细攻略目录Mistral Medium 3 简介Mistral Medium 3 安装和使用方法Mistral Medium 3 案例应用Mistral Medium 3 简介2025年5月7日,istral Medium 3 是 Mistral AI 推出的一款全新语言模型,它在保持最先进(SOTA)性能的同时,成本降低了 8 倍,并且简化了企业部署流程。该模型原创 2025-05-11 12:27:59 · 1098 阅读 · 0 评论 -
LLMs之MoE:《Pangu Ultra MoE: How to Train Your Big MoE on Ascend NPUs》翻译与解读
LLMs之MoE:《Pangu Ultra MoE: How to Train Your Big MoE on Ascend NPUs》翻译与解读目录《Pangu Ultra MoE: How to Train Your Big MoE on Ascend NPUs》翻译与解读Abstract1、IntroductionConclusion《Pangu Ultra MoE: How to Train Your Big MoE on原创 2025-05-11 11:41:38 · 1032 阅读 · 0 评论 -
MLLM之R1-Reward:《R1-Reward: Training Multimodal Reward Model Through Stable Reinforcement Learning》翻译
MLLM之R1-Reward:《R1-Reward: Training Multimodal Reward Model Through Stable Reinforcement Learning》翻译与解读目录《R1-Reward: Training Multimodal Reward Model Through Stable Reinforcement Learning》翻译与解读Abstract1、Introducti原创 2025-05-11 11:23:08 · 791 阅读 · 0 评论 -
TGV之LTX:《LTX-Video: Realtime Video Latent Diffusion》翻译与解读
TGV之LTX:《LTX-Video: Realtime Video Latent Diffusion》翻译与解读目录相关文章《LTX-Video: Realtime Video Latent Diffusion》翻译与解读Abstract1、IntroductionConclusion相关文章TGV之LTX:《LTX-Video: Realtime Video Latent Diffusion》翻译与解读TGV之LTX:LTX-V原创 2025-05-11 09:52:38 · 1010 阅读 · 0 评论 -
TGV之LTX:LTX-Video的简介、安装和使用方法、案例应用之详细攻略
TGV之LTX:LTX-Video的简介、安装和使用方法、案例应用之详细攻略目录LTX-Video的简介LTX-Video的安装和使用方法LTX-Video的案例应用LTX-Video的简介LTX-Video是第一个基于DiT的实时高质量视频生成模型。它能够以1216×704分辨率生成30 FPS的视频,速度快于观看视频本身。该模型在一个大型多样化视频数据集上进行训练,能够生成具有逼真和多样化内容的高分辨率视频。它支持文本到视频、图像到视频、关键帧动画、视原创 2025-05-11 08:42:46 · 1359 阅读 · 0 评论 -
LLMs之ChatGPT:《Connecting GitHub to ChatGPT deep research》翻译与解读
LLMs之ChatGPT:《Connecting GitHub to ChatGPT deep research》翻译与解读《Connecting GitHub to ChatGPT deep research》翻译与解读地址文章地址:https://help.openai.com/en/articles/11145903-connecting-github-to-chatgpt-deep-research社交平台:https://x.com/OpenAIDevs/status/1原创 2025-05-10 23:24:26 · 1156 阅读 · 0 评论 -
AI之Modelers:魔乐社区 (Modelers)的简介、安装和使用方法、案例应用之详细攻略
AI之Modelers:魔乐社区 (Modelers)的简介、安装和使用方法、案例应用之详细攻略目录魔乐社区 (Modelers)的简介魔乐社区 (Modelers)的安装和使用方法魔乐社区 (Modelers)的案例应用魔乐社区 (Modelers)的简介2024年8月28日,魔乐社区 (Modelers) 1.0.0版本正式上线。魔乐社区是由中国电信天翼云牵头发起的人工智能开源社区,旨在为人工智能开发者和爱好者提供一个开放的学习和交流平台。它不仅提供人工智能工具、原创 2025-05-10 23:10:22 · 695 阅读 · 0 评论 -
LLMs之Benchmark:《FormalMATH: Benchmarking Formal Mathematical Reasoning of Large Language Models》翻译与解
LLMs之Benchmark:《FormalMATH: Benchmarking Formal Mathematical Reasoning of Large Language Models》翻译与解读目录《FormalMATH: Benchmarking Formal Mathematical Reasoning of Large Language Models》翻译与解读Abstract1、Intro原创 2025-05-08 07:38:21 · 1401 阅读 · 0 评论 -
LLMs/MLMs之Qwen-3:《Qwen3: Think Deeper, Act Faster》的翻译与解读
LLMs/MLMs之Qwen-3:《Qwen3: Think Deeper, Act Faster》的翻译与解读目录相关文章《Qwen3: Think Deeper, Act Faster》的翻译与解读相关文章LLMs/MLMs之Qwen-3:《Qwen3: Think Deeper, Act Faster》的翻译与解读LLMs/MLMs之Qwen-3:《Qwen3: Think De原创 2025-04-29 07:27:32 · 1207 阅读 · 0 评论 -
LLMs/MLMs之Qwen-3:Qwen3的简介、安装和使用方法、案例应用之详细攻略
LLMs/MLMs之Qwen-3:Qwen3的简介、安装和使用方法、案例应用之详细攻略目录Qwen3的简介Qwen3的安装和使用方法Qwen3的案例应用Qwen3的简介2025年4月29日发布,Qwen3是阿里Qwen团队开发的一系列大型语言模型,是继QwQ和Qwen2.5之后最新的成果。该项目已在GitHub上开源,提供多种尺寸的密集型和混合专家型(MoE)模型,包括0.6B、1.7B、4B、8B、14B、32B和30B-A3B、235B-原创 2025-04-29 06:30:33 · 2407 阅读 · 0 评论 -
MDM:《Masked Diffusion Models are Secretly Time-Agnostic Masked Models and Exploit Inaccurate Categor
MDM:《Masked Diffusion Models are Secretly Time-Agnostic Masked Models and Exploit Inaccurate Categorical Sampling》翻译与解读目录《Masked Diffusion Models are Secretly Time-Agnostic Masked Models and Exploit Inaccurate Categorical Sa原创 2025-04-23 00:21:30 · 1026 阅读 · 0 评论 -
LLMs之Agent之RL:RAGEN的简介、安装和使用方法、案例应用之详细攻略
LLMs之Agent之RL:RAGEN的简介、安装和使用方法、案例应用之详细攻略目录RAGEN的简介1、RAGEN的特点RAGEN的安装和使用方法1、安装2、使用方法RAGEN的案例应用RAGEN的简介2025年4月,RAGEN项目是一个用于训练大型语言模型(LLM)推理代理的强化学习框架,其目标是让LLM代理能够在交互式、随机的环境中进行多轮推理。RAGEN (Reasoning AGENT,发音类似于"region") 利用强化学习原创 2025-04-23 00:20:57 · 1020 阅读 · 0 评论 -
LLMs之Safety:《A Comprehensive Survey in LLM(-Agent) Full Stack Safety:Data, Training and Deployment》翻
LLMs之Safety:《A Comprehensive Survey in LLM(-Agent) Full Stack Safety:Data, Training and Deployment》翻译与解读目录《A Comprehensive Survey in LLM(-Agent) Full Stack Safety: Data, Training and Deployment》翻译与解读Abstract1、Introdu原创 2025-04-23 00:03:23 · 1660 阅读 · 0 评论 -
LLM之LRMs:《Revisiting Prompt Optimization with Large Reasoning Models-A Case Study on Event Extractio
LLM之LRMs:《Revisiting Prompt Optimization with Large Reasoning Models-A Case Study on Event Extraction》翻译与解读目录《Revisiting Prompt Optimization with Large Reasoning Models-A Case Study on Event Extraction》翻译与解读Abstract1、原创 2025-04-19 13:54:12 · 1064 阅读 · 0 评论 -
AI之LLM之Tool:ScreenPipe的简介、安装与使用方法、案例应用之详细攻略
AI之Tool:ScreenPipe的简介、安装与使用方法、案例应用之详细攻略目录ScreenPipe的简介ScreenPipe的安装和使用方法ScreenPipe的案例应用ScreenPipe的简介ScreenPipe 是一款开源的 AI 桌面应用,旨在通过 24/7 的屏幕和麦克风录制,结合 OCR(光学字符识别)和音频转录技术,实时收集用户的桌面活动信息,并将其保存到本地数据库中。利用大型语言模型(LLM),ScreenPipe 能够对这些信息进行对话、总原创 2025-04-16 02:51:17 · 1488 阅读 · 0 评论 -
LLMs之Agent:《OpenAI发布—New tools for building agents》翻译与解读
LLMs之Agent:《OpenAI发布—New tools for building agents》翻译与解读《OpenAI发布—New tools for building agents》翻译与解读地址论文地址:https://openai.com/index/new-tools-for-building-agents/时间2025年3月11日作者OpenAI一、新工具概述:简化智能体开发OpenAI 发布了一套新的API和工具,旨在解决客户在将模型能力转原创 2025-04-16 02:50:29 · 1098 阅读 · 0 评论 -
MLMs之OpenAI o系列:OpenAI o3/o4-mini的简介、安装和使用方法、案例应用之详细攻略
MLMs之OpenAI o系列:OpenAI o3/o4-mini的简介、安装和使用方法、案例应用之详细攻略目录OpenAI o3 和 o4-mini 简介OpenAI o3 和 o4-mini 安装和使用方法OpenAI o3 和 o4-mini 案例应用OpenAI o3 和 o4-mini 简介2025年4月16日,OpenAI o3 和 o4-mini 是 OpenAI 最新发布的 o 系列模型,旨在提升 ChatGPT 的推理能力和工具使用能力。它们是目前原创 2025-04-19 13:52:30 · 1207 阅读 · 0 评论 -
LLMs之Agent:Smolagents的简介、安装和使用方法、案例应用之详细攻略
LLMs之Agent:Smolagents的简介、安装和使用方法、案例应用之详细攻略目录Smolagents的简介Smolagents的安装和使用方法Smolagents的案例应用Smolagents的简介 Smolagents 是一个由 Hugging Face 团队开发的轻量级 AI 代理框架,旨在简化 AI 代理的创建过程。它是一个精简的库,可以用几行代码运行强大的代理。该库的核心代码库约为 1000 行代码,减少了不必要的抽象,使开发过程简单易懂。Smolag原创 2025-04-16 02:49:38 · 648 阅读 · 0 评论 -
LLMs之RAG:《RAG Agents in Production: 10 Lessons We Learned》翻译与解读
LLMs之RAG:《RAG Agents in Production: 10 Lessons We Learned》翻译与解读目录《RAG Agents in Production: 10 Lessons We Learned》翻译与解读背景解决方案核心内容(10 条经验)观点结论《RAG Agents in Production: 10 Lessons We Learned》翻译与解读地址推文地址:https://x.com/aiDotEngineer/stat原创 2025-04-16 02:49:01 · 1264 阅读 · 0 评论 -
LLMs之Agent之A2A:A2A的简介、安装和使用方法、案例应用之详细攻略
LLMs之Agent之A2A:A2A的简介、安装和使用方法、案例应用之详细攻略目录A2A协议简介A2A协议的安装和使用方法A2A协议的案例应用A2A协议简介2025年4月9日,A2A (Agent2Agent) 协议是一个开放协议,旨在解决企业AI应用中不同框架和厂商构建的智能体之间难以协同工作的问题。它为不同生态系统中的智能体提供了一种协作方式,使它们能够相互通信。Google主导了这个开放协议的倡议,因为他们相信A2A协议对于支持多智能体通信至关重要,它将为智能体提供一原创 2025-04-14 00:00:04 · 1258 阅读 · 0 评论 -
LLMs之Agent之A2A:《Announcing the Agent2Agent Protocol (A2A)》翻译与解读
LLMs之Agent之A2A:《Announcing the Agent2Agent Protocol (A2A)》翻译与解读目录《Announcing the Agent2Agent Protocol (A2A)》翻译与解读1. 引言与背景2. 多代理生态系统概览3. A2A 概念及设计原则4. 典型用例与应用场景5. 安全、隐私及实施考量6. 开发者资源与未来展望7. 整体系统性总结《Announcing原创 2025-04-13 23:54:25 · 1557 阅读 · 0 评论 -
LLMs之PE:《Prompt Engineering》—Lee Boonstra翻译与解读
LLMs之PE:《Prompt Engineering》—Lee Boonstra翻译与解读目录《Prompt Engineering》—Lee Boonstra翻译与解读一、引言 (Introduction)二、提示工程 (Prompt engineering)三、LLM输出配置 (LLM output configuration)四、提示技巧 (Prompting techniques)五、自动提示工程 (Auto原创 2025-03-06 23:53:26 · 740 阅读 · 0 评论 -
MLMs之Benchmark:《InterFeedback: Unveiling Interactive Intelligence of Large Multimodal Models via Hum
MLMs之Benchmark:《InterFeedback: Unveiling Interactive Intelligence of Large Multimodal Models via Human Feedback》翻译与解读目录《InterFeedback: Unveiling Interactive Intelligence of Large Multimodal Models via Human Feedback》翻译与解读A原创 2025-04-13 23:08:36 · 1147 阅读 · 0 评论 -
LLMs之KGRAG:《MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning
LLMs之KGRAG:《MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot》翻译与解读目录《MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning原创 2025-04-09 01:06:10 · 1505 阅读 · 0 评论 -
LLMs之Agent:《OctoTools: An Agentic Framework with Extensible Tools for Complex Reasoning》翻译与解读
LLMs之Agent:《OctoTools: An Agentic Framework with Extensible Tools for Complex Reasoning》翻译与解读目录《OctoTools: An Agentic Framework with Extensible Tools for Complex Reasoning》翻译与解读Abstract1、IntroductionConclusion原创 2025-04-08 00:30:45 · 1511 阅读 · 0 评论 -
LLMs之RL之CoT:《Monitoring Reasoning Models for Misbehavior and the Risks of Promoting Obfuscation》翻译与解
LLMs之RL之CoT:《Monitoring Reasoning Models for Misbehavior and the Risks of Promoting Obfuscation》翻译与解读目录《Monitoring Reasoning Models for Misbehavior and the Risks of Promoting Obfuscation》翻译与解读Abstract1、IntroductionConclus原创 2025-04-07 23:40:16 · 2211 阅读 · 0 评论 -
LLMs之Llama:Llama 4(Llama 4 Maverick & Scout)的简介、安装和使用方法、案例应用之详细攻略
LLMs之Llama:Llama 4(Llama 4 Maverick & Scout)的简介、安装和使用方法、案例应用之详细攻略目录相关文章Llama 4 Maverick & Scout的简介Llama 4 Maverick & Scout的安装和使用方法Llama 4 Maverick & Scout的案例应用相关文章LLMs之Llama 4:《The Llama 4 herd: The beginning of a new era of natively m原创 2025-04-06 21:58:01 · 1821 阅读 · 0 评论 -
LLMs之Llama 4:《The Llama 4 herd: The beginning of a new era of natively multimodal AI innovation》翻译与解
LLMs之Llama 4:《The Llama 4 herd: The beginning of a new era of natively multimodal AI innovation》翻译与解读目录《The Llama 4 herd: The beginning of a new era of natively multimodal AI innovation》翻译与解读一、引言:Llama 4 的发布和主要特点二、Llama 4原创 2025-04-06 21:56:27 · 1616 阅读 · 0 评论 -
LLMs之Time:《TimeDistill: Efficient Long-Term Time Series Forecasting with MLP via Cross-Architecture
LLMs之Time:《TimeDistill: Efficient Long-Term Time Series Forecasting with MLP via Cross-Architecture Distillation》翻译与解读目录《TimeDistill: Efficient Long-Term Time Series Forecasting with MLP via Cross-Architecture Distillation》翻译与解读原创 2025-04-06 21:51:50 · 1661 阅读 · 0 评论 -
LLMs之RL之CPPO:《CPPO: Accelerating the Training of Group Relative Policy Optimization-Based Reasoning
LLMs之RL之CPPO:《CPPO: Accelerating the Training of Group Relative Policy Optimization-Based Reasoning Models》翻译与解读目录《CPPO: Accelerating the Training of Group Relative Policy Optimization-Based Reasoning Models》翻译与解读Abstract1、Int原创 2025-04-06 23:31:39 · 1400 阅读 · 0 评论 -
LLMs之RL之TAO:《TAO: Using test-time compute to train efficient LLMs without labeled data》翻译与解读
LLMs之RL之TAO:《TAO: Using test-time compute to train efficient LLMs without labeled data》翻译与解读目录《TAO: Using test-time compute to train efficient LLMs without labeled data》翻译与解读一、引言:TAO 的核心目标和优势二、TAO 的工作机制:测试时间计算和强化学习三、TAO原创 2025-04-06 22:24:10 · 1457 阅读 · 0 评论