【Python学习_Conda环境安装配置】

本文详细介绍了如何在Windows10上安装Anaconda和Miniconda3,配置不同Python版本,包括64位Python和PyTorch。还涵盖了使用Conda创建、管理环境,安装、更新和删除包,以及镜像源的添加与移除。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Anaconda安装

!因pytorch只支持64位,需要安装64位的Anaconda。

Miniconca3安装及配置(Win10)

!如果需要安装CUDA需要安装64位Miniconda3
参考连接:Miniconda3安装及Pytorch配置

conda python 环境配置

conda create -n py35 python=3.6     //添加3.6版本的Python环境,py36是环境名称
activate py36                                    //切换到python 3.6环境
deactivate                                         //返回默认的python环境
conda remove -n py36 --all              //删除已安装的python环境

Conda使用清华镜像安装Pytorch(Win10)

  • 添加Pytorch镜像源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/

参考链接:CUDA安装Pytorch

Conda环境镜像源管理

  • 添加清华镜像源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --set show_channel_urls yes
  • 删除镜像源
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  • 删除default镜像源
conda config --remove-key channels
  • 查看镜像源存储文件路径
conda config --show-sources

Conda环境包管理

conda list			//查看当前环境下已安装的包
conda search ffmpeg   //查找package信息
conda install -n ffmpeg    //安装包
conda update -n ffmpeg    //更新包
conda remove -n ffmpeg   //删除包
conda install --yes --file requirements.txt //安装txt中指定的依赖项

CUDA安装(Win10)

参考链接:Windows安装CUDA

### 使用 Conda 配置 Python 机器学习环境 #### 创建虚拟环境 为了确保不同项目的依赖项不会相互冲突,建议为每个项目创建独立的虚拟环境。可以通过 `conda` 命令来轻松完成这一操作: ```bash conda create -n ml_env python=3.9 ``` 这条命令会创建名为 `ml_env` 的新环境,并指定 Python 版本为 3.9[^4]。 #### 激活与停用环境 一旦创建好环境之后,需要先激活它再继续下一步的操作: ```bash conda activate ml_env ``` 当不再需要当前工作环境下运行程序时,则可通过如下指令退出该环境: ```bash conda deactivate ``` #### 安装必要的库包 在激活后的环境中,可以根据需求安装各种用于支持机器学习工作的软件包。例如,要安装 NumPy 和 Pandas 库,可以执行以下命令: ```bash conda install numpy pandas ``` 如果还需要其他特定于 TensorFlow 或 PyTorch 等框架的支持,也可以按照相同的方式进行扩展安装[^5]。 #### 导出并导入环境配置文件 完成本地开发后,在部署到生产服务器之前,应该导出现有的环境设置以便后续重复利用相同的配置。这一步骤有助于保持一致性以及减少因版本差异带来的潜在问题: ```bash conda env export > environment.yml ``` 随后,在目标主机上重新构建完全一致的工作空间只需简单几步即可实现: ```bash conda env create -f environment.yml ``` 如此一来,无论是在个人电脑还是云端实例之上都能获得稳定可靠的计算平台[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值