自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(225)
  • 收藏
  • 关注

原创 【数据集+源码】基于yolov11+streamlit的玉米叶片病虫害检测系统

本文介绍了一个基于YOLOv11和Streamlit的玉米叶片病虫害检测系统。该系统通过深度学习技术实现自动化的玉米病害识别,解决了传统人工检测效率低、主观性强的问题。文章详细阐述了YOLOv11的架构改进,包括骨干网络、Neck结构和检测头优化,并展示了系统设计流程:从3407张图片的数据集处理,到模型训练与推理实现,最后基于Streamlit搭建交互式UI界面。该系统可高效检测7种常见玉米病害,验证集mAP@50达66.5%,为农业生产提供了智能化解决方案。

2025-11-09 23:25:32 989

原创 【数据集+源码+文章】基于yolov8+streamlit的12种水果品质、成熟度检测系统

本文介绍了一个基于YOLOv8的水果品质与成熟度智能检测系统。该系统通过结合YOLOv8目标检测算法和Streamlit框架,实现对12种常见水果(如苹果、香蕉、芒果等)的品质、成熟度及表面缺陷的自动识别。系统采用自建数据集,包含3种状态标签(成熟、未成熟、腐烂),共5851张训练图像。YOLOv8模型通过优化的骨干网络和检测头设计,在保持高速推理的同时提高了检测精度。系统支持图像上传、实时检测和结果分析,为水果产业链提供了一种高效、标准化的智能质检解决方案,有助于提升农产品附加值和促进智慧农业发展。

2025-11-04 22:34:14 791

原创 【源码+数据集+训练教程】基于YOLOv8+Flask+Layui的智能垃圾分类检测系统

本文介绍了一个基于YOLOv8的智能垃圾分类检测系统。该系统整合了YOLOv8目标检测算法、Flask后端框架和Layui前端技术,旨在解决传统垃圾分类中人工分拣效率低、分类准确率不高的问题。YOLOv8算法通过改进的CSPDarknet53骨干网络、PAN-FPN特征融合和Anchor-Free检测头等创新设计,显著提升了检测精度和速度。系统可实现垃圾的自动识别分类,应用于社区宣传、校园教育等场景,降低人工干预需求,推动智慧环保建设。文章还详细对比了YOLOv8与前代版本的技术差异,突出了其在特征重用、A

2025-10-30 23:44:39 1360 1

原创 MobileNet V1: 轻量化卷积神经网络的开山之作

2017年提出的MobileNet V1革命性地解决了CNN在移动端的部署难题。其核心创新是深度可分离卷积,将标准卷积分解为深度卷积和点卷积,计算量降至1/8-1/9。网络采用13层深度可分离卷积结构,配合宽度乘数(0.25-1.0)和分辨率乘数(224-192)实现模型灵活缩放。在ImageNet上达到70.6%准确率的同时,模型仅4.2MB大小,计算量仅569M FLOPs(α=1.0时)。实验证明,该架构在保持精度的前提下,显著提升了计算效率,为移

2025-09-26 13:52:50 117 1

原创 基于YOLO8+flask+layui的行人跌倒行为检测系统【源码+模型+数据集】

文章摘要: 本文介绍了一种基于YOLOv8算法的行人跌倒行为智能识别系统,旨在解决公共场所因人工监控不足导致的跌倒事件响应滞后问题。系统采用YOLOv8作为核心检测模型,对比分析了YOLOv8相较于前代版本在骨干网络、Neck结构和检测头设计上的创新优化,包括CSPDarknet骨干网络、改进的PANet特征融合以及Anchor-Free解耦检测头等关键技术。通过专业标注的数据集(包含6,395张训练图像)进行模型训练,实现了81.5%的mAP@0.5检测精度。系统结合Flask后端与Layui前端构建轻量

2025-09-26 11:46:32 2254 1

原创 基于YOLO8的打架斗殴行为检测系统【源码+数据集+文章】

摘要: 本文介绍了基于YOLOv8的打架斗殴行为检测系统,针对公共场所暴力事件频发问题,提出智能化解决方案。YOLOv8优化了骨干网络、Neck结构和检测头设计,采用Anchor-Free范式,显著提升检测精度与速度。系统使用2291张标注图像训练,实测mAP@50达86.3%,支持实时预警。通过数据增强和超参数调优,模型在复杂场景下表现稳定。该系统可降低人工监控成本,为智慧安防提供关键技术支撑,具有重要应用价值。 关键词: YOLOv8、打架检测、公共安全、目标检测、智能监控

2025-09-15 21:35:24 1187 1

原创 基于YOLO8的棉花成熟度检测系统【数据集+源码+训练教程】

摘要: 本文介绍了基于YOLOv8的棉花成熟度智能检测系统,旨在解决传统人工判别效率低、主观性强的问题。系统采用改进的CSPDarknet53骨干网络、双向特征融合的PANet结构及解耦检测头,实现对未开铃、初开铃、充分成熟和过熟棉花的精准分类与定位。数据集包含13,771张标注图像,经数据增强后训练模型,mAP@50达94%。YOLOv8在YOLOv5和YOLOv7基础上优化了结构简洁性、激活函数统一性和训练策略,显著提升检测性能。该系统为棉花精准采收提供技术支持,推动农业智能化转型。

2025-09-15 10:08:55 939

原创 公网IP采用自签名证书配置https并消除浏览器不安全告警

本文详细介绍了Nginx的安装配置及HTTPS证书部署流程。主要内容包括:1)通过yum安装Nginx依赖组件,并编译安装包含状态监控和SSL模块的Nginx;2)使用mkcert工具生成本地自签名证书,支持多域名/IP地址;3)配置Nginx启用HTTPS服务,指定证书路径;4)通过安装CA根证书消除浏览器安全警告。文章提供了完整的命令行操作指南,涵盖从环境准备到最终验证的全过程,适用于开发环境快速搭建安全的HTTPS服务。

2025-09-12 16:07:05 1611

原创 基于YOLO8和Streamlit的学生课堂行为检测系统【源码+数据集+训练教程+文章】

摘要 本文介绍了一个基于YOLOv8和Streamlit的学生课堂行为智能识别系统。系统采用YOLOv8目标检测算法,能够精准识别6种典型课堂行为(如举手、玩手机等),并通过Streamlit实现可视化交互。文章详细解析了YOLOv8的网络架构创新,包括C2f模块、优化Neck结构和解耦检测头等改进。系统使用包含5686张标注图像的真实课堂数据集,经测试mAP@50达87.4%。该系统实现了课堂教学的智能化监管,为教育研究提供数据支持,推动了AI在智慧教育中的应用。

2025-09-08 22:18:44 938

原创 基于YOLOv8的苹果叶片病虫害检测系统【数据集+源码】

本文介绍了一种基于YOLOv8的苹果叶片病虫害智能检测系统。该系统针对苹果种植中的常见病害(如褐纹病、褐斑病等)和虫害,采用YOLOv8目标检测算法进行高效识别。系统使用包含946张标注图像的真实果园数据集,通过改进的C2f骨干网络、PAN-FPN特征融合和解耦检测头等技术,在检测精度和速度上较前代YOLO模型有显著提升。结合Streamlit框架构建的交互式Web应用,该系统实现了图像上传、实时分析和结果展示功能,为果园管理者提供科学决策支持,助力智慧农业发展。实验表明,该系统mAP@50达到85.5%,

2025-09-08 21:18:15 1382

原创 基于YOLO8的汽车碰撞事故检测系统【数据集+源码+文章】

本文介绍了一种基于YOLOv8和Streamlit的汽车碰撞事故检测系统。该系统利用YOLOv8目标检测模型识别交通事故特征,结合Streamlit框架构建可视化交互界面,实现实时视频分析和事故预警。系统采用专门标注的车辆碰撞数据集进行训练,包含1万余张图像,划分为中度碰撞和重度碰撞两类。YOLOv8模型通过改进的C2f模块、解耦检测头等创新设计,在精度和速度上优于前代版本。实验表明,该系统能有效检测事故场景,mAP@50达到0.985,可辅助交通管理部门快速响应,提升道路安全治理效率。

2025-09-06 14:51:03 1239

原创 SqueezeNet:轻量化卷积神经网络探索的先行者

SqueezeNet是一种轻量化卷积神经网络,通过创新设计在保持AlexNet精度的同时大幅减少参数。核心创新包括:使用1×1卷积替代3×3卷积减少90%参数,采用Fire模块(Squeeze+Expand结构)实现参数高效利用,以及延迟下采样保留更多空间信息。该模型仅4.8MB大小(压缩后<0.5MB),在ImageNet上达到与AlexNet相当的57.5% Top-1精度。适用于移动端部署等资源受限场景。

2025-09-03 14:58:41 198

原创 DenseNet详解:连接一切,深度高效

结合DenseNet与分组卷积学习特征图之间的连接模式进一步减少计算量和内存消耗瓶颈+压缩优化版本更激进的通道压缩(θ=0.5)在保持性能的同时大幅减少参数融合ResNet和DenseNet优点双路径结构:一路残差连接,一路密集连接在ImageNet上达到SOTA性能。

2025-09-03 14:56:44 103

原创 SENet:通道注意力机制的革新

SENet提出了一种创新的通道注意力机制Squeeze-and-Excitation(SE)模块,通过全局信息压缩和通道相关性建模动态调整特征响应。该模块可无缝集成到现有CNN架构中,以极小计算代价(约0.5%参数量增加)显著提升性能(ImageNet上top-5错误率降低25%)。核心设计包括:1)Squeeze阶段通过全局平均池化压缩空间信息;2)Excitation阶段通过全连接层学习通道权重;3)特征重标定实现自适应特征校准。实战中,SE模块可插入ResNet等网络的每个残差块后,通过重标定通道特征

2025-09-03 14:54:23 83

原创 ResNet:深度残差网络详解

ResNet通过残差学习和跳跃连接解决了深度网络退化问题,其核心创新是让网络层学习输入与输出之间的残差映射而非直接映射。标准ResNet34包含34个参数层,使用BasicBlock残差块结构,通过7×7初始卷积、4组残差块(3/4/6/3个块)和全局平均池化组成。PyTorch实现展示了基础残差块和瓶颈结构的关键代码,其中残差连接通过恒等映射或1×1卷积调整尺寸。该网络在ImageNet上首次超越人类识别水平,其设计思想对深度学习发展具有里程碑意义。

2025-09-03 14:52:52 359

原创 VGGNet详解:深度学习中的经典卷积神经网络

VGGNet是牛津大学团队2014年提出的深度卷积神经网络,通过系统性增加网络深度显著提升了图像识别性能。其创新在于:1) 全部使用3×3小卷积核堆叠,减少参数并增加非线性;2) 探索11-19层不同深度对性能的影响;3) 采用简洁统一的架构设计。典型VGG19包含16个卷积层和3个全连接层,通过ReLU激活和最大池化有效提取特征。该网络为后续深度网络设计提供了重要参考,证明了深度对性能的关键作用。

2025-09-03 14:51:52 86

原创 GoogleNet:更深的网络与更高的效率

GoogleNet(Inception v1)通过创新的Inception模块解决了深度神经网络的计算效率和梯度消失问题。其核心创新包括:并行多尺度卷积(1x1、3x3、5x5)的特征融合、1x1卷积降维、辅助分类器缓解梯度消失,以及全局平均池化替代全连接层。网络仅500万参数,比AlexNet减少12倍,在ImageNet上实现6.67% top-5错误率。代码实现展示了Inception模块的并行结构和特征拼接方式,适用于图像分类等任务。通过辅助分类器和多尺度特征提取,GoogleNet在保持高效计算的

2025-09-03 14:50:14 70

原创 AlexNet:计算机视觉的革命性之作

AlexNet是2012年ImageNet竞赛的冠军模型,通过多项创新大幅提升了计算机视觉任务的性能。其核心贡献包括:采用ReLU激活函数解决梯度消失问题,训练速度比tanh快6倍;首次使用GPU并行训练,使大规模网络训练成为可能;引入Dropout和局部响应归一化(LRN)等正则化方法防止过拟合。网络结构包含5个卷积层和3个全连接层,通过重叠池化等技术提升特征丰富性。这些创新使AlexNet在ImageNet上的top-5错误率降至15.3%,远超第二名26.2%的成绩,奠定了现代深度学习在计算机视觉领域

2025-09-03 14:46:00 137

原创 LeNet-5:卷积神经网络的奠基之作

LeNet-5是Yann LeCun于1998年提出的首个成功商业应用的卷积神经网络,专为手写字符识别设计。该网络通过卷积层(5×5小核)、下采样层(平均池化)和tanh激活函数构建,显著减少参数并增强特征不变性。在MNIST数据集上实现99%+准确率,其创新包括局部感受野、权值共享和端到端训练,为现代CNN奠定基础。实战代码展示了PyTorch实现的完整流程,包含数据准备、网络架构(3层卷积+2层全连接)、训练测试及评估指标跟踪。

2025-09-03 14:44:31 186

原创 基于YOLO8的番茄成熟度检测系统(数据集+源码+文章)

随着科技的不断进步,人工智能和深度学习技术已广泛应用于各行各业,尤其是在智慧农业方面。传统的番茄成熟度检测方法依赖于人工观察,但这种方法不仅耗时耗力,而且容易因人为因素导致误判或漏判。因此,开发一种能够自动、准确、快速地检测番茄成熟度的系统显得尤为重要

2025-09-02 21:25:21 1131

原创 基于YOLO8的垃圾识别检测系统(数据集+源码+文章)

本系统通过先进的视觉识别技术(涵盖静态图片分析、动态视频流解析及实时摄像头监控),构建了全方位、多层次的智能垃圾检测与分类体系。系统依托深度学习领域的YOLOv8图像识别算法,能够精准识别各类垃圾特征,对公共场所、社区环境中的垃圾违规堆放实现毫秒级响应与智能分类提示,有效提升环境监管效率。这一技术解决方案不仅为破解"垃圾识别与分类"难题提供了智能化路径,更通过自动化监管显著降低了人工分拣成本,推动环境治理从被动清理转向主动防控。

2025-08-30 22:07:36 2124 1

原创 手把手教会apt源配置

本文会详细介绍 apt 源的配置内容,说明不同架构、不同源、不同系统版本需要怎么填写apt源。认真读完本文,你将会:1. 准确无误的配置好国内apt源地址2. 彻底解答你心中的疑问:“为什么自己按照网上某些教程配置的apt源,不可用,报错,下载不了软件等情况?由于 apt-get 命令默认的软件源位于国外,在国内往往下载速度极慢,因此部分公司、学校将部分或所有软件的更新同步到自己的服务器,这些软件包下载来源就是国内的apt源。使用国内的apt源下载软件将会快很多。

2025-08-27 12:11:25 1501

原创 YOLOv8的罂粟毒品植株识别系统(数据集+模型+源码+技术文档)

该系统主要包含以下功能:(1)可以对罂粟植株进行识别(2)支持通过前端页面对模型识别参数进行调整。(3)系统支持图片识别、视频识别和摄像头识别。系统功能效果演示视频如下:罂粟识别 基于yolo8的罂粟非法种植识别在这里插入图片描述YOLOv8由Ultralytics团队于2023年推出,与其前代YOLOv5(同为该团队2020年发布的作品)一脉相承,整体结构较为接近。确切地说,YOLOv8是在YOLOv5的基础上进行了多项改进。

2025-08-25 14:07:49 1190

原创 Docker登录nvcr.io拉取英伟达镜像

我们要注册NGC并生成相应的api key,这个api key用于在docker上登录ngc并下载里面的镜像。比较坑的一点是,在api key生成之后,由于密码是加密的(含有****),此时再去复制,还是加密后的密码,例如我这里复制之后就是“nvapi-**********qjw”,不是用这个加密后的api key去登录,而是要拿到未加密的,据我观察,似乎是新建api key的时候才会弹窗显示原始密码,因此新建的时候一定要先复制原始密码,然后保存起来。然后在docker中登录 nvcr.io。

2025-08-13 10:43:27 1898 1

原创 YOLO8实战:基于YOLO8的电动车进电梯检测(数据集+源码+训练教程+技术文档)

该系统主要包含以下功能:(1)多角色用户注册、登录。(2)可以对电动车进电梯行为进行识别,并把识别结果返回到前端界面上。(3)支持通过前端页面对模型识别参数进行调整。(4)系统支持图片识别、视频识别和摄像头识别。系统功能效果演示视频如下:电动车进电梯数据集 yolov8电动车进电梯行为识别系统在这里插入图片描述。

2025-06-25 14:08:06 1291

转载 Langchian中的文本分割

文档分割是 RAG 应用中的关键环节,直接影响检索和生成的质量。通过深入理解 LangChain 提供的各种分割技术,并根据具体应用场景选择合适的策略,我们可以显著提升 RAG 系统的整体性能。在实际应用中,建议进行充分的测试和对比,找到最适合您特定需求的分割方法。

2025-05-08 13:11:26 256

原创 如何使用Ultralytics训练自己的yolo5 yolo8 yolo10 yolo11 yolo12等目标检测模型

Ultralytics正在以惊人的速度吸收优秀的CV算法,之前Ultralytics定位于YOLO8,但逐渐地扩展到支持其他版本的YOLO,最新版本的ultralytics全面支持yolo5yolo7yolo8yolo9yolo10yolo11。本文介绍如何用Ultralytics训练自己的yolo5yolo8yolo9yolo10yolo11模型,我们开门见山,直接步入正题。

2025-01-17 23:05:36 23409 27

原创 (纯小白教程)Mac OS中安装配置Anaconda及常用conda命令回顾

本教程介绍了如何在Mac OS系统中下载、安装、配置 Anaconda3,并介绍了换源的方法,最后介绍了常用的conda命令

2025-01-12 18:38:16 39150 6

原创 (纯小白教程)Liunx系统安装Anaconda

本文档详细介绍了如何在Linux系统(服务器)上安装Anaconda,从下载Anaconda安装包到解决可能出现的bug,每个步骤都配有清晰的说明和操作指令。

2025-01-10 15:00:14 4789

原创 (纯小白教程)windows下安装配置anaconda及常用的conda命令

本教程介绍windows系统下如何安装anaconda,并介绍如何通过anaconda prompt、cmd、windows powershell启动anaconda,最后归纳了一些anaconda常用的命令

2024-12-24 18:48:58 11677 5

原创 Can not find valid pkg-config name.Specify MYSQLCLIENT_CFLAGS and MYSQLCLIENT_LDF

在linux上进行Django应用开发,数据库使用Mysql,而django连接mysql数据库需要mysqlclient 包。但是 pip installmysqlclient 出现以下报错

2024-12-19 17:27:48 877

原创 Ubuntu本地化安装MYSQL及Navicat

本教程记录一下,如何在ubuntu上安装mysql,并安装免费版的数据库图形化连接软件Navicat

2024-12-19 16:28:52 4948

原创 FFmpeg一些常用的命令

分享FFmpeg一些常用的命令

2024-12-01 23:51:42 1641

原创 RK3568部署yolo8记录

瑞芯微教程基本上都可以在ultralytics_yolo8、rknn_toolkit2、rknn_model_zoo这三个项目的doc目录下找到,模型量化、转化、推理、部署等教程都在这里面。不仅是yolo8部署教程、包括其他yolo版本都可以找到教程。总之,关于rknn的一切教程都在ultralytics_yolo8、rknn_toolkit2、rknn_model_zoo这三个项目中。

2024-11-28 17:20:41 5260 6

原创 智慧农业数据集(一)

葡萄叶片病虫害害数据集茄子果实病虫害数据集81类水果数据集小麦叶片病虫害数据集番茄叶片病害数据集草莓叶片病虫害数据集水稻叶片病虫害数据集菠萝成熟度数据集10类水果数据集棉花叶片病虫害数据集棉花成熟度数据集柑橘叶片病虫害数据集苹果新鲜程度数据集果园内苹果数据集苹果叶片病虫害数据集茶叶树叶片病虫害数据集棉花杂质数据集

2024-09-15 22:04:26 1469

原创 YOLO8实战:暴力行为检测系统

在 yolov1 检测网络之中,一共有24个卷积层,另外还有两个全积层。如图4-11所示。图4-11 yolo网络结构图这里面所内含的卷积层,主要负责对图像的特征捕获采集,而两个全积层则是来处理分析得到图像的预测位置,另外还有类别概率值。从 yolo 模式看来,该网络借鉴了 GoogLeNet 的分类网络结构。

2024-08-29 14:34:00 3500 2

原创 yolo目标检测数据集标注及格式介绍

本篇文章介绍yolo目标检测数据集的一般格式,及如何借助labelimg标注软件对图片进行标注。最后对数据集进行划分,并将数据集组织为ultralytics框架可用的目录结构,使数据集能够利用ultralytics框架对yolo3、yolo5、yolo8、yolo9、yolo10等进行训练。

2024-08-21 00:30:28 26650 1

原创 如何配置yolov10环境?

本文介绍如何快速搭建起yolov10环境,用于后续项目推理、模型训练。教程适用win、linux系统

2024-07-10 22:30:40 6327 4

原创 ONNX模型利用CUDA加速如何正确配置好环境?

ONNX模型利用CUDA加速正确配置好环境

2024-06-28 17:29:26 3236

原创 如何安装多版本CUDA?

在Anaconda中安装CUDA,配置多版本CUDA

2024-06-27 15:01:25 3012

minist数据集原始图片 压缩包中是minist数据集的图片文件,包含60000张图片,标签为0-9

minist数据集原始图片。压缩包中是minist数据集的图片文件,包含60000张图片,标签为0-9.

2023-08-09

Byzer-lang:byzer-lang-all-in-one-linux-amd64

外网资源不好下载,上传到此处了。原资源链接是: https://download.byzer.org/byzer-lang/2.3.8/byzer-lang-all-in-one-linux-amd64-3.3.0-2.3.8.tar.gz

2023-07-25

byzer-llm-3.3-2.12-0.1.0-SNAPSHOT.jar

byzer-llm-3.3_2.12-0.1.0-SNAPSHOT.jar 外网资源不好下载,放在这里了。原资源链接:https://download.byzer.org/byzer-extensions/nightly-build/byzer-llm-3.3_2.12-0.1.0-SNAPSHOT.jar

2023-07-25

c语言商品销售系统源码

主要分为三个模块。客户--销售部门--公司经理 1--客户。客户主要是通过该系统进行订货。进入系统后,需要注册,登陆。系统会自主分配。一个服务编号给客户,由客户自己设定密码。订购之后,可以登录查询自己的订货情况. 2--采购部门。主管仓库,查看处理缺货,进货。使用该系统前,首先必须由采购部门建立仓 库。填写货物名称,进价,售价,库存数量。货物编号由系统自主按序分配 3--经理只需要抽时间查看一下销售报表。了解每一种货物的销售情况,以及总的销售利润。

2023-06-28

基于c语言实现的中国象棋源码

本文将介绍中国象棋的源代码,采用c语言编写。该代码实现了中国象棋的基本游戏规则和操作,包括棋盘、棋子、移动规则、吃子规则、判断胜负等功能。代码结构清晰、易于理解和修改,适合初学者学习和进阶者使用。由于中国象棋的规则和操作较为复杂,本代码仅实现了基本规则,丕包括特殊规则和棋谱记录功能。读者可根据震要进行扩展和完善。

2023-06-28

c语言实现的汉诺塔演示程序

c语言实现的汉诺塔演示程序 汉诺塔(Tower of Hanoi),又称河内塔。源自印度古老传说的一个游戏,大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。 现有三个柱子A、B、C,其中有n个圆盘在A柱上,最终要实现把这n个圆盘从A柱借助B柱移动到C柱上。实现实现思路:先将n-1个圆盘从A柱移动到B柱上,然后将A柱上最后一个圆盘移动到C柱上,最后再把B柱上的n-1个圆盘移动到C柱上。

2023-06-28

基于c语言实现的UDP通信系统

基于c语言实现的UDP通信传输系统 这是一个控制台程序,需要用命令提示符打开。使用方式: (1)首先在开始菜单中打开“运行”命令,然后找到命令udp.exe (2)用同样的方法在另一台主机上运行udp.exe命令。

2023-06-28

JAVA生命游戏多线程模式(使用n个线程并行读取初始pgm文件,把图像分割为n份,分别计算出下一轮的细胞状态,然后重新整合)

5.将生命游戏由单线程模式改为多线程模式,使用n个线程并行读取初始pgm文件,把图像分割为n份,分别计算出下一轮的细胞状态,然后重新整合为一个新一代细胞状态图。要求程序无死锁(Deadlock Free),无竞争条件(No Race Condition),无久等(No Long Waiting)等状态发生,可以采用任何一种线程同步机制实现,建议首选BlockingQueue。 (1)增加一项ticker功能,报告每隔两秒钟活着的细胞数量。 (2)设计一个简单的GUI,能够控制GOL游戏引擎功能,“start”开始运行,“pause”暂停程序运行,“continue”继续运行程序,“quit”结束程序运行。Ticker功能可以加在GUI里。 (3)采用工具对程序性能进行基准测试(BenchMark Test),对测试结果进行可视化,详细分析结果影响因素,比如线程数量、执行的次数对性能的影响,比较执行的时间,整体吞吐量等多维度目标。 撰写报告,内容包括:介绍(包括实现的功能、采用的算法、测试方式、性能结果),具体功能实现及流程,可视化

2023-06-28

JAVA多线程实现2个producer和一个Consumer把整数放入到一个环形缓冲Circle Buffer中

采用2个producer和一个Consumer把整数放入到(或者从中取出)一个环形缓冲Circle Buffer中,这块连续的存储会被反复使用。一个写指针指向数据写入的位置,如果写到Buffer的末端,则从Buffer的头端开始写。类似的,一个读指针指向读取数据的位置,如果读到Buffer的末端,也转回到头端开始读。 Producer1: 每间隔0ms~500ms把一个整数放入buffer中,从1开始依次累加。 Producer2: 每间隔0ms~500ms把一个整数放入buffer中,从1000开始依次递减。 Consumer: 每间隔0ms~5ms从buffer中读出一个数。 采用同步机制synchronized/wait(notify)或者lock(unlock)/condition variable实现两个producer和一个consumer之间协调运行。运行结果输出格式为:Put(or Get) number {[content] length start_index end_index} 包含说明文档:采用的机制、完成情况、运行结果

2023-06-28

c语言实现的力学相关的流体源码

#define WIDTH 1024 // 屏幕宽 #define HEIGHT 576 // 屏幕高 #define NUM_MOVERS 600 // 小球数量 #define FRICTION 0.96f // 摩擦力 // 定义小球结构 struct Mover { COLORREF color; // 颜色 float x, y; // 坐标 float vX, vY; // 速度 }; // 定义全局变量 Mover movers[NUM_MOVERS]; // 小球数组 int mouseX, mouseY; // 当前鼠标坐标 int mouseVX, mouseVY; // 鼠标速度 int prevMouseX, prevMouseY; // 上次鼠标坐标 bool isMouseDown; // 鼠标左键是否按下

2023-06-28

基于c语言实现的火车票订票管理系统

程序中传递的有信息有:票务信息(包括车次,出发站、到达站、出发时间日期,历时、票数,票价)个人购票信息(姓名,身份信息,车次,出发时间日期,座位号,票价) 1.票务浏览:对票务系统中的所有票务信息进行浏览,获取不同时间日期的票务信息。 2.购票: 当乘客购票成功后,为乘客构建购票信息,用于存储该乘客所有的购票信息,以便乘客查询,同时减少票务系统中的相关票数。 3.退票 :当乘客退票成功后,将相关的购票信息从为乘客构建的购票信息系统中删除,同时增加票务系统的相关票数。 4.信息查看 :乘客可随时查看票务系统中所有的票务信息,用于查看个人的所有购票信息。

2023-06-28

基于Java Swing组件的实验展示系统

java实验展示系统主要对实验题目、实验程序代码、实验程序代码的运行结果,这三个字段进行增、删、查、改。 (1)实验题目的查询、增加、删除、修改:用户进入该系统后能通过GUI图形化界面对java实验题目进行编辑,通过GUI画面新增实验题目,并存储在文件中,然后该GUI界面能实时显示刚刚新增的实验题目。如果需要对实验题目进行修改,还能通过GUI画面对该实验题目进行修改,同样,还可以删除该实验题目。 (2)实验程序、实验结果的查询、增加、删除与修改:通过GUI新增实验题目以后需要为该实验题目添加正确的实验代码与代码运行结果。同样地,也可以对实验代码和运行结果进行修改与删除。 GUI图形化交互界面:该实验系统能够通过GUI界面与用户进行交互,能接收用户通过界面增加的数据信息,并且能够将数据信息保存到文件中,能正确识别用户发出的修改与删除信息的指令,从文件中正确修改、删除用户想要操作的某条数据。GUI图形化交互界面一方面需要与用户交互,另一方面能够对文件进行操作,使程序关闭后,数据仍然能完好无损地保存在文件中。

2023-06-02

基于C语言实现的俄罗斯方块小游戏

C语言实现的俄罗斯方块小游戏有如下功能: 1、在二维的平面里用各种随即产生的方块堆积木,每填满一行消去一行, 当到达顶部时,游戏结束。 2、玩家能通过方向键来控制方块的转动,左移,右移和直落。 3、每种类型的方块都有颜色。游戏有预览的功能,能告诉玩家下一个将出 现什么类型的方块。 4、游戏能够在玩的过程中,给出玩家的分数,分数是由随即方块的类型决 定的,每堆一个方块,就将分数累加到总分中。 5、游戏有暂停、开始和结束、游戏规则、游戏说明等控制。 通过对功能要求的分析,将俄罗斯方块游戏的功能划分为2个类模块,它们是: Tetris类:该类包含main方法,应为应用程序的主类。该类用来创建游戏的用户界面,整个程序从该类的main方法开始执行。 Tetrisblok类:用来设计游戏界面。游戏界面显示在由Tetrisblok 类创建的整个用户界面的中(Center)区,游戏的即时分数、堆积木的二维平面即时效果图及方块的预览功能都在整个类里面实现。用来封装俄罗斯小方块。一个方块的属性是由方块1位置即x和y的坐标、颜色决定的。

2023-06-02

c语言教工工资管理系统

(1)一个小型学院教工工资管理系统,工资管理的数据文件中存储有教工姓名、月工资、教工号、性别、年龄、电话号码,该程序可以录入和显示所有员工的相关资料。在录入所有教工后,系统会自动对教工按工资进行降序排列存入文件中。 (2)项目运行的软、硬件环境: Windows操作系统以及相应的软硬件 Microsoft  Visual C++ 6.0  (3)项目具体的功能要求: 数据录入:输入各种数据; 数据统计:各行政人员的工资计算最终按工资进行的冒泡排序; 数据打印:打印表格; 数据备份:把相关数据写入文件; 退出:退出本系统。

2023-05-24

java swing mysql实现的员工工资管理系统项目

由Java swing mysql数据库实现的员工工资管理系统,该项目功能相对完善,有管理员和普通用户两个角色,分别实现了一些列功能,数据库采用的是mysql,这个代码的复杂度非常适合Java初学者和学生用来参考学习。 包含部门信息管理:部门信息的增加、修改、删除、查询等多种功能。

2023-05-24

glove.6B.100d.tx t词向量文件

下载解压后即是glove.6B.100d.txt文件,glove.6B.100d词向量文件中,每个词语会使用一个100维的向量表示。

2023-03-28

NLTK下载停用词(stopwords)

Resource stopwords not found. Please use the NLTK Downloader to obtain the resource: import nltk >>> nltk.download('stopwords') For more information see: https://www.nltk.org/data.html Attempted to load corpora/stopwords 错误解决方法。 NLTK下载停用词(stopwords)资源,下载后解压到相应目录中即可,亲测可用!

2023-03-28

IMDb Large Movie Review-数据集

该数据集共有5万条评论,其中25000条是训练数据,25000条是测试数据,数据下载后包括train和test两个数据集。训练数据和测试数据分别在不同的文件夹中,train和test文件夹中分别同时包含有pos(正向)和neg(负向)两种评论。在pos和neg文件夹中,每一个.txt文件包含一条评论。

2023-03-23

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除