题目大意:
给定区间【a, b】, 输出a, b之间round Numbers的数量, round number满足它的 二进制形式0的个数大于1的个数
题目分析:
分别求出闭区间 [0 ,a]内有T个RN, 闭区间 [0 ,b+1] 内有S个RN, 再用 S – T 就是闭区间 [a ,b]内的RN数了。
题目程序:
#include<iostream>
using namespace std;
int c[33][33] = {0};
int bin[35];//十进制n的二进制数
/*杨辉三角赋值*/
void play_table(){
for(int i=0;i<=32;i++)
for(int j=0;j<=i;j++)
if(!j || i==j)
c[i][j]=1;
else
c[i][j]=c[i-1][j-1]+c[i-1][j];
}
/*十进制n转换二进制,逆序存放到bin[]*/
void dec_to_bin(int n)
{
bin[0]=0; //b[0]是二进制数的长度
while(n)
{
bin[++bin[0]]=n%2;
n/=2;
}
return;
}
/*计算比十进制数n小的所有RN数*/
int round(int n)
{
int i,j;
int sum=0; //比十进制数n小的所有RN数
dec_to_bin(n);
/*计算长度小于bin[0]的所有二进制数中RN的个数*/
//比原数少一位,这个数的第一位为1,从第二位开始计算,对比原数即第三位
for(i=1;i<bin[0]-1;i++)
for(j=i/2+1;j<=i;j++)
sum+=c[i][j];
/*计算长度等于bin[0]的所有二进制数中RN的个数*/
int zero=0; //从高位向低位搜索过程中出现0的位的个数
for(i=bin[0]-1;i>=1;i--) //从第二位开始计算
if(bin[i]) //当前位为1, (bin[0] + 1) / 2为本应该出来的0的个数
//zero为已经有的0个数和把当前位变为0,所以加1
for(j =(bin[0]+1)/2-(zero+1);j<=i-1;j++) //零的个数
sum+=c[i-1][j]; //i-1的意思是允许组合的低位从i位后面算起
else
zero++;
return sum;
}
int main(){
//freopen("in.txt","r",stdin);
//如果是多个测试例,一定记得memset c数组
play_table();
int a,b;
cin>>a>>b;
cout<<round(b+1)-round(a)<<endl;
return 0;
}