poj 3252 Round Numbers 排列组合 杨辉三角

         Round Numbers     

题目大意

给定区间【a, b】, 输出a, b之间round Numbers的数量, round number满足它的 二进制形式0的个数大于1的个数

题目分析

分别求出闭区间 [0 ,a]内有TRN, 闭区间 [0 ,b+1] 内有SRN, 再用 S – T 就是闭区间 [a ,b]内的RN数了。

题目程序

#include<iostream>
using namespace std;

int c[33][33] = {0};
int bin[35];//十进制n的二进制数  

/*杨辉三角赋值*/  
void play_table(){
	for(int i=0;i<=32;i++)  
        for(int j=0;j<=i;j++)  
            if(!j || i==j)
                c[i][j]=1;
            else  
                c[i][j]=c[i-1][j-1]+c[i-1][j];
}

/*十进制n转换二进制,逆序存放到bin[]*/
void dec_to_bin(int n)  
{  
    bin[0]=0;   //b[0]是二进制数的长度  
    while(n)  
    {  
        bin[++bin[0]]=n%2;  
        n/=2;  
    }  
    return;  
}
/*计算比十进制数n小的所有RN数*/  
int round(int n)  
{  
    int i,j;  
    int sum=0;  //比十进制数n小的所有RN数  
    dec_to_bin(n);  
  
    /*计算长度小于bin[0]的所有二进制数中RN的个数*/  
	//比原数少一位,这个数的第一位为1,从第二位开始计算,对比原数即第三位
    for(i=1;i<bin[0]-1;i++)   
        for(j=i/2+1;j<=i;j++)
            sum+=c[i][j];
  
    /*计算长度等于bin[0]的所有二进制数中RN的个数*/  
  
    int zero=0;  //从高位向低位搜索过程中出现0的位的个数  
    for(i=bin[0]-1;i>=1;i--)  //从第二位开始计算
        if(bin[i])   //当前位为1, (bin[0] + 1) / 2为本应该出来的0的个数
					//zero为已经有的0个数和把当前位变为0,所以加1
            for(j =(bin[0]+1)/2-(zero+1);j<=i-1;j++)  //零的个数
                sum+=c[i-1][j];  //i-1的意思是允许组合的低位从i位后面算起
        else  
            zero++;  
  
    return sum;  
}

int main(){
	//freopen("in.txt","r",stdin);
	//如果是多个测试例,一定记得memset c数组
	play_table();  
    int a,b;  
    cin>>a>>b;  
    cout<<round(b+1)-round(a)<<endl;  
    return 0; 
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值