动态规划入门例题理理解

首先说明一下,本菜鸡是看了慕课网的视频后自己再写的一遍,非原创。
数据有可能有溢出,懒得改long long了。

例子是斐波那契数列。
f(0) = 0;
f(1) = 1;
f(n) = f(n - 1) + f(n - 2);

一般来说,我刚刚学c的时候可能会写出这样的代码。

#include <iostream>
using namespace std;

//定义斐波那契切函数

int f(int n)
{
    if ( n == 0 )
        return 0;
    if ( n == 1 )
        return 1;
    return f(n - 1) + f(n - 2);
}

int main()
{
    int n;
    //定义开始时间和结束时间,用来测试运行时间的!!!
    time_t startTime = clock();
    int res = f(n);
    time_t endTime = clock();

    cout << "函数值为 : " <<res << endl;
    cout << "运行时间为 :" << double(endTime - startTime) / CLOCKS_PER_SEC << "秒" << endl;
    return 0;
}

这样的代码,没毛病,但是就是运行速度太慢了!!

由于,我们在做递归的时候计算了很多重复的,在这里插入图片描述
框起来的红色的区域就是重复计算了太多的!!

然后我们不需要计算那么多重复的,所以新开一个数组或者向量来存放。

这里我开的是向量

新代码如下:

#include <iostream>
#include <vector>
using namespace std;

//定义一个向量叫做memo
vector<int> memo;
int n = 40;
//定义斐波那契切函数

int f(int n)
{
    if (n == 0)
        return 0;
    if (n == 1)
        return 1;
    //这里判断,如果memo[n]里面的值还是-1,也就是没算过,就计算,不然就不算
    //避免多余的计算!!!
    if (memo[n] == -1)
        memo[n] =  f(n - 1) + f(n - 2);
    return memo[n];
}

int main()
{ 
    //定义memo里面的元素都为-1,用来判断算过没算过
    memo = vector<int>(n+1,-1);
    //定义开始时间和结束时间,用来测试运行时间的!!!
    time_t startTime = clock();
    int res = f(n);
    time_t endTime = clock();

    cout << "函数值为 : " <<res << endl;
    cout << "运行时间为 :" << double(endTime - startTime) / CLOCKS_PER_SEC << "秒" << endl;
    return 0;
}
```cpp


最后可以把代码简化一下子,就是如下:

```cpp
#include <iostream>
#include <vector>
using namespace std;

//定义一个向量叫做memo
vector<int> memo;
int n = 40;
//定义斐波那契切函数

int f1(int n)
{
    //定义memo里面的元素都为-1,用来判断算过没算过
    vector<int>(n+1,-1);
    memo[0] = 0;
    memo[1] = 1;
    
    //时间复杂度为O(n)
    for (int i = 2; i <= n; i ++)
    {
        memo[n] = memo[n - 1] + memo[n - 2];
    }
    return memo[n];
}

int main()
{ 
    
    //定义开始时间和结束时间,用来测试运行时间的!!!
    time_t startTime = clock();
    int res = f(n);
    time_t endTime = clock();

    cout << "函数值为 : " <<res << endl;
    cout << "运行时间为 :" << double(endTime - startTime) / CLOCKS_PER_SEC << "秒" << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值