首先说明一下,本菜鸡是看了慕课网的视频后自己再写的一遍,非原创。
数据有可能有溢出,懒得改long long了。
例子是斐波那契数列。
f(0) = 0;
f(1) = 1;
f(n) = f(n - 1) + f(n - 2);
一般来说,我刚刚学c的时候可能会写出这样的代码。
#include <iostream>
using namespace std;
//定义斐波那契切函数
int f(int n)
{
if ( n == 0 )
return 0;
if ( n == 1 )
return 1;
return f(n - 1) + f(n - 2);
}
int main()
{
int n;
//定义开始时间和结束时间,用来测试运行时间的!!!
time_t startTime = clock();
int res = f(n);
time_t endTime = clock();
cout << "函数值为 : " <<res << endl;
cout << "运行时间为 :" << double(endTime - startTime) / CLOCKS_PER_SEC << "秒" << endl;
return 0;
}
这样的代码,没毛病,但是就是运行速度太慢了!!
由于,我们在做递归的时候计算了很多重复的,
框起来的红色的区域就是重复计算了太多的!!
然后我们不需要计算那么多重复的,所以新开一个数组或者向量来存放。
这里我开的是向量
新代码如下:
#include <iostream>
#include <vector>
using namespace std;
//定义一个向量叫做memo
vector<int> memo;
int n = 40;
//定义斐波那契切函数
int f(int n)
{
if (n == 0)
return 0;
if (n == 1)
return 1;
//这里判断,如果memo[n]里面的值还是-1,也就是没算过,就计算,不然就不算
//避免多余的计算!!!
if (memo[n] == -1)
memo[n] = f(n - 1) + f(n - 2);
return memo[n];
}
int main()
{
//定义memo里面的元素都为-1,用来判断算过没算过
memo = vector<int>(n+1,-1);
//定义开始时间和结束时间,用来测试运行时间的!!!
time_t startTime = clock();
int res = f(n);
time_t endTime = clock();
cout << "函数值为 : " <<res << endl;
cout << "运行时间为 :" << double(endTime - startTime) / CLOCKS_PER_SEC << "秒" << endl;
return 0;
}
```cpp
最后可以把代码简化一下子,就是如下:
```cpp
#include <iostream>
#include <vector>
using namespace std;
//定义一个向量叫做memo
vector<int> memo;
int n = 40;
//定义斐波那契切函数
int f1(int n)
{
//定义memo里面的元素都为-1,用来判断算过没算过
vector<int>(n+1,-1);
memo[0] = 0;
memo[1] = 1;
//时间复杂度为O(n)
for (int i = 2; i <= n; i ++)
{
memo[n] = memo[n - 1] + memo[n - 2];
}
return memo[n];
}
int main()
{
//定义开始时间和结束时间,用来测试运行时间的!!!
time_t startTime = clock();
int res = f(n);
time_t endTime = clock();
cout << "函数值为 : " <<res << endl;
cout << "运行时间为 :" << double(endTime - startTime) / CLOCKS_PER_SEC << "秒" << endl;
return 0;
}