动态规划入门例题

本文通过一系列动态规划问题,如数字组合、神奇口袋、大盗阿福等,深入浅出地介绍了动态规划的基本思想和常见应用场景。每个问题都包含详细的解题思路,如状态定义、初始化和转移方程,帮助读者掌握动态规划的解决技巧。
摘要由CSDN通过智能技术生成

题目链接

A - 数字组合

小蒜有 n(1≤n≤20)个正整数,找出其中和为 t(t 也是正整数)的可能的组合方式。如:n=5,5 个数分别为 1,2,3,4,5,t=5;那么可能的组合有 5=1+4和 5=2+3和 5=5三种组合方式。输入格式输入的第一行是两个正整数 n 和 t,用空格隔开,其中 1 ≤ n ≤ 20 1 \le n \le 20 1n20, 表示正整数的个数,t 为要求的和 ( 1 ≤ t ≤ 1000 ) (1≤t≤1000) (1t1000)接下来的一行是 n 个正整数,用空格隔开。输出格式和为 t 的不同的组合方式的数目。输出时每行末尾的多余空格,不影响答案正确性
样例输入
5 5
1 2 3 4 5
样例输出
3

定义:
d p [ i ] [ j ] dp[i][j] dp[i][j]为考虑前 i i i个数和为j的组合的个数
初始化:
d p [ i ] [ 0 ] = 1 dp[i][0]=1 dp[i][0]=1,即不管考虑多少个数,和为0的组合方案数只有一个,就是没有加数。
转移方程:
d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + ( j − a [ i ] > = 0 ? d p [ i − 1 ] [ j − a [ i ] ] : 0 ) dp[i][j] = dp[i - 1][j] + (j - a[i] >= 0 ? dp[i - 1][j - a[i]]:0) dp[i][j]=dp[i1][j]+(ja[i]>=0?dp[i1][ja[i]]:0)。前 i i i个数和为 j j j的方案数等于前 i − 1 i-1 i1个数和为j的方案数加上前 i − 1 i-1 i1个数和为 j − a [ i ] j-a[i] ja[i]的方案数( j − a [ i ] + a [ i ] = j j-a[i]+a[i]=j ja[i]+a[i]=j)。

那么所求结果即为考虑前 n n n个数和为t的方案数,即为 d p [ n ] [ t ] dp[n][t] dp[n][t]

#include<iostream>
using namespace std;
int a[21];
int dp[21][1001];
int n, t;
int main() {
   
	cin >> n >> t;
	for (int i = 1; i <= n; ++i)cin >> a[i];
	for (int i = 0; i <= n; ++i)dp[i][0] = 1;
	for (int i = 1; i <= n; ++i) {
   
		for (int j = 1; j <= t; ++j) {
   
			dp[i][j] = dp[i - 1][j] + (j - a[i] >= 0 ? dp[i - 1][j - a[i]]:0);
		}
	}
	cout << dp[n][t];
}

B - 神奇的口袋

有一个神奇的口袋,总的容积是 400,用这个口袋可以变出一些物品,这些物品的总体积必须是 400。小蒜现在有n个想要得到的物品,每个物品的体积分别是 a 1 ​ , a 2 ⋯ a n a_1​,a_2\cdots a_n a1a2an。小蒜可以从这些物品中选择一些,如果选出的物体的总体积是 400,那么利用这个神奇的口袋,小蒜就可以得到这些物品。现在的问题是,小蒜有多少种不同的选择物品的方式。输入格式输入的第一行是正整数 n ( 1 ≤ n ≤ 200 ) n(1≤n≤200) n(1n200),表示不同的物品的数目。接下来的 n n n 行,每行有一个 1 到 400 之间的正整数,分别给出 a 1 ​ , a 2 ⋯ a n a_1​,a_2\cdots a_n a1a2an 的值。输出格式输出不同的选择物品的方式的数目对 10000取模的结果(因为结果可能很大,为了避免高精度计算,只要求对 10000取模的结果)。输出时每行末尾的多余空格,不影响答案正确性
样例输入
3
200
200
200
样例输出
3

定义:
d p [ i ] [ j ] dp[i][j] dp[i][j]为考虑前 i i i个物体体积和为j的组合的个数
初始化:
d p [ i ] [ 0 ] = 1 dp[i][0]=1 dp[i][0]=1,即不管考虑多少个物品,体积和为0的组合方案数只有一个,就是没有任何物品。
转移方程:
d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + ( j − a [ i ] > = 0 ? d p [ i − 1 ] [ j − a [ i ] ] : 0 ) dp[i][j]=dp[i−1][j]+(j−a[i]>=0?dp[i−1][j−a[i]]:0) dp[i][j]=dp[i1][j]+(ja[i]>=0?dp[i1][ja[i]]:0)。前i个物品体积和为j的方案数等于前 i − 1 i-1 i1个物品体积和为j的方案数加上前 i − 1 i-1 i1个物品体积和为 j − a [ i ] j-a[i] ja[i]的方案数( j − a [ i ] + a [ i ] = j j−a[i]+a[i]=j ja[i]+a[i]=j)。

#include<iostream>
using namespace std;
int a[201];
int dp[201][401];
int n;
constexpr int V = 400, mod = 10000;
int main() {
   
	cin >> n;
	for (int i = 1; i <= n; ++i)cin >> a[i];
	for (int i = 0; i <= n; ++i) {
   
		dp[i][0] = 1;
	}
	for (int i = 1; i <= n; ++i) {
   
		for (int j = 0; j <= V; ++j) {
   
			dp[i][j] = dp[i - 1][j] + (j - a[i] >= 0 ? dp[i - 1][j - a[i]] : 0) % mod;
		}
	}
	cout << dp[n][V] % mod;
	
}

C - 大盗阿福

阿福是一名经验丰富的大盗。趁着月黑风高,阿福打算今晚洗劫一条街上的店铺。这条街上一共有 N N N 家店铺,每家店中都有一些现金。阿福事先调查得知,只有当他同时洗劫了两家相邻的店铺时,街上的报警系统才会启动,然后警察就会蜂拥而至。作为一向谨慎作案的大盗,阿福不愿意冒着被警察追捕的风险行窃。他想知道,在不惊动警察的情况下,他今晚最多可以得到多少现金?输入格式输入的第一行是一个整数 T ( T ≤ 50 ) T(T≤50) T(T50),表示一共有 T T T组数据。接下来的每组数据,第一行是一个整数 N ( 1 ≤ N ≤ 100 , 000 ) N(1≤N≤100,000) N(1N100,000),表示一共有 N 家店铺。第二行是 N N N 个被空格分开的正整数,表示每一家店铺中的现金数量。每家店铺中的现金数量均不超过 1000。输出格式对于每组数据,输出一行。该行包含一个整数,表示阿福在不惊动警察的情况下可以得到的现金数量。提示对于第一组样例,阿福选择第 2 家店铺行窃,获得的现金数量为 8。对于第二组样例,阿福选择第 1 和 4 家店铺行窃,获得的现金数量为 10+14=24。输出时每行末尾的多余空格,不影响答案正确性

  • 6
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值