对于一个递归函数 w(a,b,c)w(a,b,c)
- 如果 a \le 0a≤0 或 b \le 0b≤0 或 c \le 0c≤0 就返回值11。
- 如果 a>20a>20 或 b>20b>20 或 c>20c>20 就返回 w(20,20,20)w(20,20,20)
- 如果 a<ba<b 并且 b<cb<c 就返回w(a,b,c-1)+w(a,b-1,c-1)-w(a,b-1,c)w(a,b,c−1)+w(a,b−1,c−1)−w(a,b−1,c)。
- 其它的情况就返回 w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1)w(a−1,b,c)+w(a−1,b−1,c)+w(a−1,b,c−1)−w(a−1,b−1,c−1)
-
会有若干行。
并以 -1,-1,-1−1,−1,−1 结束。
保证输入的数在 [-9223372036854775808,9223372036854775807][−9223372036854775808,9223372036854775807] 之间,并且是整数。
-
一个大难题,代码见wwww,注意因为输入的数字范围太大,变量和数组都要定义long long
-
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
for (int k=0;k<N;k++){
z[i][j][k]=-30;
}
}
} -
i,j,k是帮助记忆的变量,a,b,c才是需要进行判断的值,所以在w函数里用的都是a,b,c
-
if(a<=0||b<=0||c<=0)
// return z[a][b][c]=1;
return 1;
if(a>20||b>20||c>20)
// return z[a][b][c]=w(20,20,20); -
注意如果a,b,c是负数都只需要返回1,就不需要返回z[a][b][c]=1进行记忆,a,b,c大于20时同理。
-
while(1)
{
scanf("%lld%lld%lld",&a,&b,&c);
if(a==-1&&b==-1&&c==-1) {
break;
}
printf("w(%lld, %lld, %lld) = %lld\n",a,b,c,w(a,b,c)); -
同时主函数输入输出这里要用while语句,不能用if语句,那样无法结束虽然我不知道为什么,而且洛谷还是错的,全WA。